{"title":"Regulation mechanisms and implications of sperm membrane hyperpolarization","authors":"Carla Ritagliati , Carolina Baro Graf , Cintia Stival , Dario Krapf","doi":"10.1016/j.mod.2018.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>Mammalian sperm are unable to fertilize the egg immediately after ejaculation. In order to gain fertilization competence, they need to undergo a series of biochemical and physiological modifications inside the female reproductive tract, known as capacitation. Capacitation correlates with two essential events for fertilization: hyperactivation, an asymmetric and vigorous flagellar motility, and the ability to undergo the acrosome reaction. At a molecular level, capacitation is associated to: phosphorylation cascades, modification of membrane lipids, alkalinization of the intracellular pH, increase in the intracellular Ca<sup>2+</sup> concentration and hyperpolarization of the sperm plasma membrane potential. Hyperpolarization is a crucial event in capacitation since it primes the sperm to undergo the exocytosis of the acrosome content, essential to achieve fertilization of the oocyte.</p></div>","PeriodicalId":49844,"journal":{"name":"Mechanisms of Development","volume":"154 ","pages":"Pages 33-43"},"PeriodicalIF":2.6000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mod.2018.04.004","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanisms of Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925477318300327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 21
Abstract
Mammalian sperm are unable to fertilize the egg immediately after ejaculation. In order to gain fertilization competence, they need to undergo a series of biochemical and physiological modifications inside the female reproductive tract, known as capacitation. Capacitation correlates with two essential events for fertilization: hyperactivation, an asymmetric and vigorous flagellar motility, and the ability to undergo the acrosome reaction. At a molecular level, capacitation is associated to: phosphorylation cascades, modification of membrane lipids, alkalinization of the intracellular pH, increase in the intracellular Ca2+ concentration and hyperpolarization of the sperm plasma membrane potential. Hyperpolarization is a crucial event in capacitation since it primes the sperm to undergo the exocytosis of the acrosome content, essential to achieve fertilization of the oocyte.
期刊介绍:
Mechanisms of Development is an international journal covering the areas of cell biology and developmental biology. In addition to publishing work at the interphase of these two disciplines, we also publish work that is purely cell biology as well as classical developmental biology.
Mechanisms of Development will consider papers in any area of cell biology or developmental biology, in any model system like animals and plants, using a variety of approaches, such as cellular, biomechanical, molecular, quantitative, computational and theoretical biology.
Areas of particular interest include:
Cell and tissue morphogenesis
Cell adhesion and migration
Cell shape and polarity
Biomechanics
Theoretical modelling of cell and developmental biology
Quantitative biology
Stem cell biology
Cell differentiation
Cell proliferation and cell death
Evo-Devo
Membrane traffic
Metabolic regulation
Organ and organoid development
Regeneration
Mechanisms of Development does not publish descriptive studies of gene expression patterns and molecular screens; for submission of such studies see Gene Expression Patterns.