Regulation mechanisms and implications of sperm membrane hyperpolarization

IF 2.6 Q2 Medicine Mechanisms of Development Pub Date : 2018-12-01 DOI:10.1016/j.mod.2018.04.004
Carla Ritagliati , Carolina Baro Graf , Cintia Stival , Dario Krapf
{"title":"Regulation mechanisms and implications of sperm membrane hyperpolarization","authors":"Carla Ritagliati ,&nbsp;Carolina Baro Graf ,&nbsp;Cintia Stival ,&nbsp;Dario Krapf","doi":"10.1016/j.mod.2018.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>Mammalian sperm are unable to fertilize the egg immediately after ejaculation. In order to gain fertilization competence, they need to undergo a series of biochemical and physiological modifications inside the female reproductive tract, known as capacitation. Capacitation correlates with two essential events for fertilization: hyperactivation, an asymmetric and vigorous flagellar motility, and the ability to undergo the acrosome reaction. At a molecular level, capacitation is associated to: phosphorylation cascades, modification of membrane lipids, alkalinization of the intracellular pH, increase in the intracellular Ca<sup>2+</sup> concentration and hyperpolarization of the sperm plasma membrane potential. Hyperpolarization is a crucial event in capacitation since it primes the sperm to undergo the exocytosis of the acrosome content, essential to achieve fertilization of the oocyte.</p></div>","PeriodicalId":49844,"journal":{"name":"Mechanisms of Development","volume":"154 ","pages":"Pages 33-43"},"PeriodicalIF":2.6000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mod.2018.04.004","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanisms of Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925477318300327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 21

Abstract

Mammalian sperm are unable to fertilize the egg immediately after ejaculation. In order to gain fertilization competence, they need to undergo a series of biochemical and physiological modifications inside the female reproductive tract, known as capacitation. Capacitation correlates with two essential events for fertilization: hyperactivation, an asymmetric and vigorous flagellar motility, and the ability to undergo the acrosome reaction. At a molecular level, capacitation is associated to: phosphorylation cascades, modification of membrane lipids, alkalinization of the intracellular pH, increase in the intracellular Ca2+ concentration and hyperpolarization of the sperm plasma membrane potential. Hyperpolarization is a crucial event in capacitation since it primes the sperm to undergo the exocytosis of the acrosome content, essential to achieve fertilization of the oocyte.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
精子膜超极化的调控机制及其意义
哺乳动物的精子不能在射精后立即使卵子受精。为了获得受精能力,它们需要在雌性生殖道内经历一系列生化和生理变化,即获能。获能与受精的两个基本事件相关:过度激活,不对称和有力的鞭毛运动,以及进行顶体反应的能力。在分子水平上,获能与:磷酸化级联、膜脂修饰、细胞内pH碱化、细胞内Ca2+浓度增加和精子质膜电位的超极化有关。超极化是获能过程中的一个关键事件,因为它为精子进行顶体内容物的胞外分泌提供了条件,而顶体内容物是实现卵母细胞受精所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanisms of Development
Mechanisms of Development 生物-发育生物学
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
12.4 weeks
期刊介绍: Mechanisms of Development is an international journal covering the areas of cell biology and developmental biology. In addition to publishing work at the interphase of these two disciplines, we also publish work that is purely cell biology as well as classical developmental biology. Mechanisms of Development will consider papers in any area of cell biology or developmental biology, in any model system like animals and plants, using a variety of approaches, such as cellular, biomechanical, molecular, quantitative, computational and theoretical biology. Areas of particular interest include: Cell and tissue morphogenesis Cell adhesion and migration Cell shape and polarity Biomechanics Theoretical modelling of cell and developmental biology Quantitative biology Stem cell biology Cell differentiation Cell proliferation and cell death Evo-Devo Membrane traffic Metabolic regulation Organ and organoid development Regeneration Mechanisms of Development does not publish descriptive studies of gene expression patterns and molecular screens; for submission of such studies see Gene Expression Patterns.
期刊最新文献
Editorial Board Publisher's note Outside Front Cover Regulatory functions of gga-miR-218 in spermatogonial stem cells meiosis by targeting Stra8 Improved early development potence of in vitro fertilization embryos by treatment with tubacin increasing acetylated tubulin of matured porcine oocytes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1