Topological Network Analysis of Electroencephalographic Power Maps.

Yuan Wang, Moo K Chung, Daniela Dentico, Antoine Lutz, Richard Davidson
{"title":"Topological Network Analysis of Electroencephalographic Power Maps.","authors":"Yuan Wang, Moo K Chung, Daniela Dentico, Antoine Lutz, Richard Davidson","doi":"10.1007/978-3-319-67159-8_16","DOIUrl":null,"url":null,"abstract":"<p><p>Meditation practice as a non-pharmacological intervention to provide health related benefits has generated much neuroscientific interest in its effects on brain activity. Electroencephalogram (EEG), an imaging modality known for its inexpensive procedure and excellent temporal resolution, is often utilized to investigate the neuroplastic effects of meditation under various experimental conditions. In these studies, EEG signals are routinely mapped on a topographic layout of channels to visualize variations in spectral powers within certain frequency ranges. Topological data analysis (TDA) of the topographic power maps modeled as graphs can provide different insight to EEG signals than standard statistical methods. A highly effective TDA technique is persistent homology, which reveals topological characteristics of a power map by tracking feature changes throughout a filtration process on the graph structure of the map. In this paper, we propose a novel inference procedure based on filtrations induced by sublevel sets of the power maps of high-density EEG signals. We apply the pipeline to simulated and real data, where we compare the persistent homological features of topographic maps of spectral powers in high-frequency bands of EEG signals recorded on long-term meditators and meditation-naive practitioners.</p>","PeriodicalId":92190,"journal":{"name":"Connectomics in neuroimaging : First International Workshop, CNI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, proceedings. CNI (Workshop) (1st : 2017 : Quebec, Quebec)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5922271/pdf/nihms875270.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connectomics in neuroimaging : First International Workshop, CNI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, proceedings. CNI (Workshop) (1st : 2017 : Quebec, Quebec)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-67159-8_16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/9/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Meditation practice as a non-pharmacological intervention to provide health related benefits has generated much neuroscientific interest in its effects on brain activity. Electroencephalogram (EEG), an imaging modality known for its inexpensive procedure and excellent temporal resolution, is often utilized to investigate the neuroplastic effects of meditation under various experimental conditions. In these studies, EEG signals are routinely mapped on a topographic layout of channels to visualize variations in spectral powers within certain frequency ranges. Topological data analysis (TDA) of the topographic power maps modeled as graphs can provide different insight to EEG signals than standard statistical methods. A highly effective TDA technique is persistent homology, which reveals topological characteristics of a power map by tracking feature changes throughout a filtration process on the graph structure of the map. In this paper, we propose a novel inference procedure based on filtrations induced by sublevel sets of the power maps of high-density EEG signals. We apply the pipeline to simulated and real data, where we compare the persistent homological features of topographic maps of spectral powers in high-frequency bands of EEG signals recorded on long-term meditators and meditation-naive practitioners.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑电波功率图的拓扑网络分析
冥想练习作为一种非药物干预措施,可提供与健康相关的益处,它对大脑活动的影响已引起神经科学的极大兴趣。脑电图(EEG)是一种成像模式,以其廉价的程序和出色的时间分辨率而著称,经常被用来研究冥想在各种实验条件下对神经可塑性的影响。在这些研究中,EEG 信号通常被映射到通道的拓扑布局上,以观察特定频率范围内频谱功率的变化。拓扑数据分析(TDA)将地形功率图建模为图形,可提供与标准统计方法不同的脑电信号洞察力。持续同源性是一种高效的拓扑数据分析技术,它通过跟踪功率图的图结构过滤过程中的特征变化来揭示功率图的拓扑特征。在本文中,我们提出了一种基于高密度脑电信号功率图子级集诱导过滤的新型推理程序。我们将该管道应用于模拟数据和真实数据,比较了长期冥想者和不冥想者记录的脑电信号高频段频谱功率地形图的持续同源特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dysfunctional brain network organization in neurodevelopmental disorders Insights into cognition from network science analyses of human brain functional connectivity: Working memory as a test case Connectivity and dysconnectivity: A brief history of functional connectivity research in schizophrenia and future directions Copyright The uniqueness of the individual functional connectome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1