{"title":"[Cloning, heterologous expression and characterization of a thermostable esterase from Bacillus sp. HJ14 for diethyl-phthalate degradation].","authors":"Zheng Peng, Junmei Ding, Yunjuan Yang, Junjun Li, Yuelin Mu, Zunxi Huang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>A thermostable esterase EstZ1 from Bacillus sp. HJ14 able to degrade diethyl-phthalate (DEP) was heterologously expressed in Escherichia coli BL21(DE3) and characterized.</p><p><strong>Methods: </strong>Full-length EstZ1 was obtained based on specific amplification and genome sequencing, and amino acid sequence of EstZ1 was analyzed. EstZ1 was expressed in Escherichia coli BL21(DE3) using the pEASY-E2 expression system. EstZ1 was purified to electrophoretic homogeneity by Ni2+-NTA metal chelating affinity chromatography, and the enzyme was characterized. The degradation products from DEP were detected by high-pressure liquid chromatography and electrospray ionization mass spectrometry.</p><p><strong>Results: </strong>The 903 bp full-length EstZ1 encoded 300 amino acid residues (EstZ1:33.84 kDa). EstZ1 showed the highest identity of 98% with hormone-sensitive lipase (HSL)-like family in NCBI databases. The optimal temperature and pH was 50℃ and 9.0, respectively, with p-NP butyrate as the best substrate. Meanwhile, it was stable between 40 and 70℃, pH 7.0 to 9.5. Most of metal ions, chemical agents had little impact. DEP could partially be degraded by EstZ1 to its corresponding monoalkyl and alcohol.</p><p><strong>Conclusion: </strong>Our findings may serve as reference for phthalate esters degradation.</p>","PeriodicalId":7120,"journal":{"name":"微生物学报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"微生物学报","FirstCategoryId":"1089","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: A thermostable esterase EstZ1 from Bacillus sp. HJ14 able to degrade diethyl-phthalate (DEP) was heterologously expressed in Escherichia coli BL21(DE3) and characterized.
Methods: Full-length EstZ1 was obtained based on specific amplification and genome sequencing, and amino acid sequence of EstZ1 was analyzed. EstZ1 was expressed in Escherichia coli BL21(DE3) using the pEASY-E2 expression system. EstZ1 was purified to electrophoretic homogeneity by Ni2+-NTA metal chelating affinity chromatography, and the enzyme was characterized. The degradation products from DEP were detected by high-pressure liquid chromatography and electrospray ionization mass spectrometry.
Results: The 903 bp full-length EstZ1 encoded 300 amino acid residues (EstZ1:33.84 kDa). EstZ1 showed the highest identity of 98% with hormone-sensitive lipase (HSL)-like family in NCBI databases. The optimal temperature and pH was 50℃ and 9.0, respectively, with p-NP butyrate as the best substrate. Meanwhile, it was stable between 40 and 70℃, pH 7.0 to 9.5. Most of metal ions, chemical agents had little impact. DEP could partially be degraded by EstZ1 to its corresponding monoalkyl and alcohol.
Conclusion: Our findings may serve as reference for phthalate esters degradation.
期刊介绍:
Acta Microbiologica Sinica(AMS) is a peer-reviewed monthly (one volume per year)international journal,founded in 1953.It covers a wide range of topics in the areas of general and applied microbiology.The journal
publishes original papers,reviews in microbiological science,and short communications describing unusual observations.
Acta Microbiologica Sinica has been indexed in Index Copernicus (IC),Chemical Abstract (CA),Excerpt Medica Database (EMBASE),AJ of Viniti (Russia),Biological Abstracts (BA),Chinese Science Citation Database
(CSCD),China National Knowledge Infrastructure(CNKI),Institute of Scientific and Technical Information of China(ISTIC),Chinese Journal Citation Report(CJCR),Chinese Biological Abstracts,Chinese Pharmaceutical
Abstracts,Chinese Medical Abstracts and Chinese Science Abstracts.