[Effects of glucose on photosynthesis and growth of Chloralla sp. HN08 cells].

微生物学报 Pub Date : 2017-04-04
Xiaoyu Lang, Zhiyuan Liu, Meng Xu, Lingyu Xie, Rongzhen Li
{"title":"[Effects of glucose on photosynthesis and growth of Chloralla sp. HN08 cells].","authors":"Xiaoyu Lang,&nbsp;Zhiyuan Liu,&nbsp;Meng Xu,&nbsp;Lingyu Xie,&nbsp;Rongzhen Li","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To study the potential of using glucose as carbon source to produce microalgae biomass and biochemical components, such as photosynthetic pigments, lipids, carbohydrates and proteins by tropical marine microalgae Chloralla sp. HN08.</p><p><strong>Methods: </strong>We compared the growth characteristics of Chloralla sp. HN08 cells under photoautotrophic and mixotrophic (10 g/L glucose was added into the medium) conditions. The photosynthesis, specific growth rates, cell densities, and the content of cell's major components including lipids, starch, soluble sugar, and soluble protein were determined and compared.</p><p><strong>Results: </strong>Glucose (10 g/L in medium) could promote Chlorella growth and increase the final cell density under light condition. However, cells declined gradually under heterotrophic condition. Under mixotrophic condition, the specific growth rate and the final cell density were 6.8 and 1.3 times as that of cells under photoautotrophic condition, respectively. The content of soluble sugar, starch, and lipids in mixotrophic cells was also significantly higher (P<0.05) than that in photoautotrophic cells. However, the content of soluble protein and photosynthetic pigments of mixotrophic cells was significantly lower (P<0.05) than that of autotrophic cells. Algae culture with glucose addition showed a higher light saturation as well as respiration rate. No significant difference in net photosynthesis rate was found between autotrophic and mixotrophic cultures (P>0.05).</p><p><strong>Conclusion: </strong>Under light condition, glucose as a carbon source can promote lipids and starch accumulation, as well as biomass production.</p>","PeriodicalId":7120,"journal":{"name":"微生物学报","volume":"57 4","pages":"550-9"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"微生物学报","FirstCategoryId":"1089","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To study the potential of using glucose as carbon source to produce microalgae biomass and biochemical components, such as photosynthetic pigments, lipids, carbohydrates and proteins by tropical marine microalgae Chloralla sp. HN08.

Methods: We compared the growth characteristics of Chloralla sp. HN08 cells under photoautotrophic and mixotrophic (10 g/L glucose was added into the medium) conditions. The photosynthesis, specific growth rates, cell densities, and the content of cell's major components including lipids, starch, soluble sugar, and soluble protein were determined and compared.

Results: Glucose (10 g/L in medium) could promote Chlorella growth and increase the final cell density under light condition. However, cells declined gradually under heterotrophic condition. Under mixotrophic condition, the specific growth rate and the final cell density were 6.8 and 1.3 times as that of cells under photoautotrophic condition, respectively. The content of soluble sugar, starch, and lipids in mixotrophic cells was also significantly higher (P<0.05) than that in photoautotrophic cells. However, the content of soluble protein and photosynthetic pigments of mixotrophic cells was significantly lower (P<0.05) than that of autotrophic cells. Algae culture with glucose addition showed a higher light saturation as well as respiration rate. No significant difference in net photosynthesis rate was found between autotrophic and mixotrophic cultures (P>0.05).

Conclusion: Under light condition, glucose as a carbon source can promote lipids and starch accumulation, as well as biomass production.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
葡萄糖对小藻HN08细胞光合作用和生长的影响[j]。
目的:研究热带海洋微藻小藻(Chloralla sp. HN08)以葡萄糖为碳源生产微藻生物量及光合色素、脂类、碳水化合物和蛋白质等生化成分的潜力。方法:比较光自养和混合营养(培养基中添加10 g/L葡萄糖)条件下小藻HN08细胞的生长特性。测定并比较了光合作用、特定生长率、细胞密度以及细胞主要成分脂质、淀粉、可溶性糖和可溶性蛋白的含量。结果:在光照条件下,葡萄糖(10 g/L)能促进小球藻生长,提高最终细胞密度。而在异养条件下,细胞逐渐衰退。混合营养条件下的特定生长率和最终细胞密度分别是光自养条件下的6.8倍和1.3倍。混合营养细胞中可溶性糖、淀粉和脂质含量也显著升高(P0.05)。结论:在光照条件下,葡萄糖作为碳源可以促进脂质和淀粉的积累,促进生物量的产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
7960
期刊介绍: Acta Microbiologica Sinica(AMS) is a peer-reviewed monthly (one volume per year)international journal,founded in 1953.It covers a wide range of topics in the areas of general and applied microbiology.The journal publishes original papers,reviews in microbiological science,and short communications describing unusual observations. Acta Microbiologica Sinica has been indexed in Index Copernicus (IC),Chemical Abstract (CA),Excerpt Medica Database (EMBASE),AJ of Viniti (Russia),Biological Abstracts (BA),Chinese Science Citation Database (CSCD),China National Knowledge Infrastructure(CNKI),Institute of Scientific and Technical Information of China(ISTIC),Chinese Journal Citation Report(CJCR),Chinese Biological Abstracts,Chinese Pharmaceutical Abstracts,Chinese Medical Abstracts and Chinese Science Abstracts.
期刊最新文献
粪便微生物宏基因组来源L-天冬酰胺酶的性质表征及应用研究 烟草化感自毒物质降解复合菌剂的优化及应用效果评价 花生根际促生复合菌剂对连作花生生理生化指标和根际细菌群落的影响 驯化噬菌体提高噬菌体对碳青霉烯类耐药肺炎克雷伯菌的杀菌能力 植物乳杆菌源胺氧化酶的异源表达及功能结构分析
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1