Frequencies of Circulating Th1-Biased T Follicular Helper Cells in Acute HIV-1 Infection Correlate with the Development of HIV-Specific Antibody Responses and Lower Set Point Viral Load.
Omolara Baiyegunhi, Bongiwe Ndlovu, Funsho Ogunshola, Nasreen Ismail, Bruce D Walker, Thumbi Ndung'u, Zaza M Ndhlovu
{"title":"Frequencies of Circulating Th1-Biased T Follicular Helper Cells in Acute HIV-1 Infection Correlate with the Development of HIV-Specific Antibody Responses and Lower Set Point Viral Load.","authors":"Omolara Baiyegunhi, Bongiwe Ndlovu, Funsho Ogunshola, Nasreen Ismail, Bruce D Walker, Thumbi Ndung'u, Zaza M Ndhlovu","doi":"10.1128/JVI.00659-18","DOIUrl":null,"url":null,"abstract":"<p><p>Despite decades of focused research, the field has yet to develop a prophylactic vaccine for HIV-1 infection. In the RV144 vaccine trial, nonneutralizing antibody responses were identified as a correlate for prevention of HIV acquisition. However, factors that predict the development of such antibodies are not fully elucidated. We sought to define the contribution of circulating T follicular helper (cTfh) subsets to the development of nonneutralizing antibodies in HIV-1 clade C infection. Study participants were recruited from an acute HIV-1 clade C infection cohort. Plasma anti-gp41, -gp120, -p24, and -p17 antibodies were screened using a customized multivariate Luminex assay. Phenotypic and functional characterizations of cTfh cells were performed using HLA class II tetramers and intracellular cytokine staining. In this study, we found that acute HIV-1 clade C infection skewed the differentiation of functional cTfh subsets toward increased Tfh1 (<i>P</i> = 0.02) and Tfh2 (<i>P</i> < 0.0001) subsets, with a concomitant decrease in overall Tfh1-17 (which shares both Tfh1 and Tfh17 properties) (<i>P</i> = 0.01) and Tfh17 (<i>P</i> < 0.0001) subsets, compared to the subsets found in HIV-negative subjects. Interestingly, the frequencies of Tfh1 cells during acute infection (5.0 to 8.0 weeks postinfection) correlated negatively with the set point viral load (<i>P</i> = 0.03, Spearman rho [<i>r</i>] = -60) and were predictive of p24-specific plasma IgG titers at 1 year of infection (<i>P</i> = 0.003, <i>r</i> = 0.85). Taken together, our results suggest that the circulating Tfh1 subset plays an important role in the development of anti-HIV antibody responses and contributes to HIV suppression during acute HIV-1 infection. These results have implications for vaccine studies aimed at inducing long-lasting anti-HIV antibody responses.<b>IMPORTANCE</b> The HIV epidemic in southern Africa accounts for almost half of the global HIV burden, with HIV-1 clade C being the predominant strain. It is therefore important to define immune correlates of clade C HIV control that might have implications for vaccine design in this region. T follicular helper (Tfh) cells are critical for the development of HIV-specific antibody responses and could play a role in viral control. Here we showed that the early induction of circulating Tfh1 cells during acute infection correlated positively with the magnitude of p24-specific IgG and was associated with a lower set point viral load. This study highlights a key Tfh cell subset that could limit HIV replication by enhancing antibody generation. This study underscores the importance of circulating Tfh cells in promoting nonneutralizing antibodies during HIV-1 infection.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2018-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1128/JVI.00659-18","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/JVI.00659-18","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/8/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 41
Abstract
Despite decades of focused research, the field has yet to develop a prophylactic vaccine for HIV-1 infection. In the RV144 vaccine trial, nonneutralizing antibody responses were identified as a correlate for prevention of HIV acquisition. However, factors that predict the development of such antibodies are not fully elucidated. We sought to define the contribution of circulating T follicular helper (cTfh) subsets to the development of nonneutralizing antibodies in HIV-1 clade C infection. Study participants were recruited from an acute HIV-1 clade C infection cohort. Plasma anti-gp41, -gp120, -p24, and -p17 antibodies were screened using a customized multivariate Luminex assay. Phenotypic and functional characterizations of cTfh cells were performed using HLA class II tetramers and intracellular cytokine staining. In this study, we found that acute HIV-1 clade C infection skewed the differentiation of functional cTfh subsets toward increased Tfh1 (P = 0.02) and Tfh2 (P < 0.0001) subsets, with a concomitant decrease in overall Tfh1-17 (which shares both Tfh1 and Tfh17 properties) (P = 0.01) and Tfh17 (P < 0.0001) subsets, compared to the subsets found in HIV-negative subjects. Interestingly, the frequencies of Tfh1 cells during acute infection (5.0 to 8.0 weeks postinfection) correlated negatively with the set point viral load (P = 0.03, Spearman rho [r] = -60) and were predictive of p24-specific plasma IgG titers at 1 year of infection (P = 0.003, r = 0.85). Taken together, our results suggest that the circulating Tfh1 subset plays an important role in the development of anti-HIV antibody responses and contributes to HIV suppression during acute HIV-1 infection. These results have implications for vaccine studies aimed at inducing long-lasting anti-HIV antibody responses.IMPORTANCE The HIV epidemic in southern Africa accounts for almost half of the global HIV burden, with HIV-1 clade C being the predominant strain. It is therefore important to define immune correlates of clade C HIV control that might have implications for vaccine design in this region. T follicular helper (Tfh) cells are critical for the development of HIV-specific antibody responses and could play a role in viral control. Here we showed that the early induction of circulating Tfh1 cells during acute infection correlated positively with the magnitude of p24-specific IgG and was associated with a lower set point viral load. This study highlights a key Tfh cell subset that could limit HIV replication by enhancing antibody generation. This study underscores the importance of circulating Tfh cells in promoting nonneutralizing antibodies during HIV-1 infection.
期刊介绍:
Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.