Visualizing the Patient-Reported Outcomes Measurement Information System (PROMIS) Measures for Clinicians and Patients.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2018-04-16 eCollection Date: 2017-01-01
Lisa V Grossman, Elliot G Mitchell
{"title":"Visualizing the Patient-Reported Outcomes Measurement Information System (PROMIS) Measures for Clinicians and Patients.","authors":"Lisa V Grossman, Elliot G Mitchell","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Congruent with the nationwide movement toward patient-centered healthcare, an increasing number of organizations collect and assess patient-reported outcomes (PROs). The standardized NIH PROMIS measures represent one of the most widely used PRO questionnaires, but organizations still face challenges with conveying PROMIS outcomes to clinicians in clinically relevant ways. Our proposed solution, the ProVis application, uses visualizations to engage heart failure patients with PROMIS questionnaires in the waiting room, and conveys PROMIS data to clinicians through longitudinal visualizations in iNYP, our institution's electronic health record (EHR) interface. Here, we discuss the design and development of ProVis, the alternative strategies we considered, the strengths and weaknesses of ProVis, and our future dissemination and evaluation plans.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":" ","pages":"2289-2293"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977703/pdf/2820744.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Congruent with the nationwide movement toward patient-centered healthcare, an increasing number of organizations collect and assess patient-reported outcomes (PROs). The standardized NIH PROMIS measures represent one of the most widely used PRO questionnaires, but organizations still face challenges with conveying PROMIS outcomes to clinicians in clinically relevant ways. Our proposed solution, the ProVis application, uses visualizations to engage heart failure patients with PROMIS questionnaires in the waiting room, and conveys PROMIS data to clinicians through longitudinal visualizations in iNYP, our institution's electronic health record (EHR) interface. Here, we discuss the design and development of ProVis, the alternative strategies we considered, the strengths and weaknesses of ProVis, and our future dissemination and evaluation plans.

Abstract Image

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为临床医生和患者提供可视化的患者报告结果衡量信息系统 (PROMIS) 衡量标准。
随着全国范围内开展以患者为中心的医疗保健运动,越来越多的机构开始收集和评估患者报告的结果(PROs)。标准化的美国国立卫生研究院 PROMIS 测量方法是使用最广泛的 PRO 问卷之一,但各机构在以临床相关的方式向临床医生传达 PROMIS 结果方面仍面临挑战。我们提出的解决方案 ProVis 应用程序利用可视化技术让心衰患者在候诊室参与 PROMIS 问卷调查,并通过本机构的电子病历 (EHR) 界面 iNYP 中的纵向可视化技术向临床医生传达 PROMIS 数据。在此,我们将讨论 ProVis 的设计和开发、我们考虑过的替代策略、ProVis 的优缺点以及我们未来的推广和评估计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ethicara for Responsible AI in Healthcare: A System for Bias Detection and AI Risk Management. Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint. Towards Understanding the Generalization of Medical Text-to-SQL Models and Datasets. Transferable and Interpretable Treatment Effectiveness Prediction for Ovarian Cancer via Multimodal Deep Learning. Understanding Cancer Caregiving and Predicting Burden: An Analytics and Machine Learning Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1