QSAR Modeling and Molecular Docking Analysis of Some Active Compounds against Mycobacterium tuberculosis Receptor (Mtb CYP121).

IF 1.1 Q4 MICROBIOLOGY Journal of Pathogens Pub Date : 2018-05-10 eCollection Date: 2018-01-01 DOI:10.1155/2018/1018694
Shola Elijah Adeniji, Sani Uba, Adamu Uzairu
{"title":"QSAR Modeling and Molecular Docking Analysis of Some Active Compounds against <i>Mycobacterium tuberculosis</i> Receptor (Mtb CYP121).","authors":"Shola Elijah Adeniji, Sani Uba, Adamu Uzairu","doi":"10.1155/2018/1018694","DOIUrl":null,"url":null,"abstract":"<p><p>A quantitative structure-activity relationship (QSAR) study was performed to develop a model that relates the structures of 50 compounds to their activities against <i>M. tuberculosis</i>. The compounds were optimized by employing density functional theory (DFT) with B3LYP/6-31G<sup>⁎</sup>. The Genetic Function Algorithm (GFA) was used to select the descriptors and to generate the correlation model that relates the structural features of the compounds to their biological activities. The optimum model has squared correlation coefficient (<i>R</i><sup>2</sup>) of 0.9202, adjusted squared correlation coefficient (<i>R</i><sub>adj</sub>) of 0.91012, and leave-one-out (LOO) cross-validation coefficient (<i>Q</i><sub>cv</sub><sup>2</sup>) value of 0.8954. The external validation test used for confirming the predictive power of the built model has <i>R</i><sup>2</sup>pred value of 0.8842. These parameters confirm the stability and robustness of the model. Docking analysis showed the best compound with high docking affinity of -14.6 kcal/mol which formed hydrophobic interaction and hydrogen bond with amino acid residues of <i>M. tuberculosis</i> cytochromes (Mtb CYP121). QSAR and molecular docking studies provide valuable approach for pharmaceutical and medicinal chemists to design and synthesize new anti-<i>Mycobacterium tuberculosis</i> compounds.</p>","PeriodicalId":16788,"journal":{"name":"Journal of Pathogens","volume":"2018 ","pages":"1018694"},"PeriodicalIF":1.1000,"publicationDate":"2018-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5971244/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathogens","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/1018694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A quantitative structure-activity relationship (QSAR) study was performed to develop a model that relates the structures of 50 compounds to their activities against M. tuberculosis. The compounds were optimized by employing density functional theory (DFT) with B3LYP/6-31G. The Genetic Function Algorithm (GFA) was used to select the descriptors and to generate the correlation model that relates the structural features of the compounds to their biological activities. The optimum model has squared correlation coefficient (R2) of 0.9202, adjusted squared correlation coefficient (Radj) of 0.91012, and leave-one-out (LOO) cross-validation coefficient (Qcv2) value of 0.8954. The external validation test used for confirming the predictive power of the built model has R2pred value of 0.8842. These parameters confirm the stability and robustness of the model. Docking analysis showed the best compound with high docking affinity of -14.6 kcal/mol which formed hydrophobic interaction and hydrogen bond with amino acid residues of M. tuberculosis cytochromes (Mtb CYP121). QSAR and molecular docking studies provide valuable approach for pharmaceutical and medicinal chemists to design and synthesize new anti-Mycobacterium tuberculosis compounds.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对结核分枝杆菌受体(Mtb CYP121)的一些活性化合物的 QSAR 建模和分子对接分析
通过定量结构-活性关系(QSAR)研究,建立了一个模型,将 50 种化合物的结构与它们对结核杆菌的活性联系起来。这些化合物通过密度泛函理论(DFT)B3LYP/6-31G⁎进行了优化。利用遗传函数算法(GFA)选择描述符,并生成相关模型,将化合物的结构特征与其生物活性联系起来。最佳模型的平方相关系数(R2)为 0.9202,调整平方相关系数(Radj)为 0.91012,一出交叉验证系数(Qcv2)为 0.8954。用于确认所建模型预测能力的外部验证测试的 R2pred 值为 0.8842。这些参数证实了模型的稳定性和鲁棒性。对接分析表明,最佳化合物的对接亲和力为 -14.6 kcal/mol,与结核杆菌细胞色素(Mtb CYP121)的氨基酸残基形成疏水作用和氢键。QSAR 和分子对接研究为制药和药物化学家设计和合成新的抗结核杆菌化合物提供了宝贵的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Pathogens
Journal of Pathogens MICROBIOLOGY-
自引率
0.00%
发文量
4
审稿时长
15 weeks
期刊最新文献
Fermented Polyherbal Formulation Restored Ricinoleic Acid-Induced Diarrhea in Sprague Dawley Rats and Exhibited In Vitro Antibacterial Effect on Multiple Antibiotic-Resistant Gastrointestinal Pathogens. Establishment of a STING-Deficient HepG2 Cell Line through CRISPR/Cas9 System and Evaluation of Its Effects on Salmonella Replication. Detection of Biofilm Production and Antibiotic Susceptibility Pattern among Clinically Isolated Staphylococcus aureus. Seroprevalence of Human Brucellosis among Syrian Refugees in Jordan, 2022 Characteristics of Escherichia coli Isolated from Intestinal Microbiota Children of 0–5 Years Old in the Commune of Abomey-Calavi
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1