{"title":"A Bayesian Robust IRT Outlier-Detection Model.","authors":"Nicole K Öztürk, George Karabatsos","doi":"10.1177/0146621616679394","DOIUrl":null,"url":null,"abstract":"<p><p>In psychometric practice, the parameter estimates of a standard item-response theory (IRT) model can become biased when item-response data, of persons' individual responses to test items, contain outliers relative to the model. Also, the manual removal of outliers can be a time-consuming and difficult task. Besides, removing outliers leads to data information loss in parameter estimation. To address these concerns, a Bayesian IRT model that includes person and latent item-response outlier parameters, in addition to person ability and item parameters, is proposed and illustrated, and is defined by item characteristic curves (ICCs) that are each specified by a robust, Student's <i>t</i>-distribution function. The outlier parameters and the robust ICCs enable the model to automatically identify item-response outliers, and to make estimates of the person ability and item parameters more robust to outliers. Hence, under this IRT model, it is unnecessary to remove outliers from the data analysis. Our IRT model is illustrated through the analysis of two data sets, involving dichotomous- and polytomous-response items, respectively.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0146621616679394","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/0146621616679394","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/11/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
In psychometric practice, the parameter estimates of a standard item-response theory (IRT) model can become biased when item-response data, of persons' individual responses to test items, contain outliers relative to the model. Also, the manual removal of outliers can be a time-consuming and difficult task. Besides, removing outliers leads to data information loss in parameter estimation. To address these concerns, a Bayesian IRT model that includes person and latent item-response outlier parameters, in addition to person ability and item parameters, is proposed and illustrated, and is defined by item characteristic curves (ICCs) that are each specified by a robust, Student's t-distribution function. The outlier parameters and the robust ICCs enable the model to automatically identify item-response outliers, and to make estimates of the person ability and item parameters more robust to outliers. Hence, under this IRT model, it is unnecessary to remove outliers from the data analysis. Our IRT model is illustrated through the analysis of two data sets, involving dichotomous- and polytomous-response items, respectively.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.