Francesca Lavatelli , Andrea di Fonzo , Giovanni Palladini , Giampaolo Merlini
{"title":"Systemic amyloidoses and proteomics: The state of the art","authors":"Francesca Lavatelli , Andrea di Fonzo , Giovanni Palladini , Giampaolo Merlini","doi":"10.1016/j.euprot.2016.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>Systemic amyloidoses are caused by misfolding-prone proteins that polymerize in tissues, causing organ dysfunction. Since proteins are etiological agents of these diseases, proteomics was soon recognized as a privileged instrument for their investigation. Mass spectrometry-based proteomics has acquired a fundamental role in management of systemic amyloidoses, being now considered a gold standard approach for amyloid typing. In parallel, approaches for analyzing circulating amyloid precursors have been developed. Moreover, differential and functional proteomics hold promise for identifying novel biomarkers and clarifying disease mechanisms. This review discusses recent proteomics achievements in systemic amyloidoses, providing a perspective on its present and future applications.</p></div>","PeriodicalId":38260,"journal":{"name":"EuPA Open Proteomics","volume":"11 ","pages":"Pages 4-10"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.euprot.2016.02.003","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EuPA Open Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212968516300162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 16
Abstract
Systemic amyloidoses are caused by misfolding-prone proteins that polymerize in tissues, causing organ dysfunction. Since proteins are etiological agents of these diseases, proteomics was soon recognized as a privileged instrument for their investigation. Mass spectrometry-based proteomics has acquired a fundamental role in management of systemic amyloidoses, being now considered a gold standard approach for amyloid typing. In parallel, approaches for analyzing circulating amyloid precursors have been developed. Moreover, differential and functional proteomics hold promise for identifying novel biomarkers and clarifying disease mechanisms. This review discusses recent proteomics achievements in systemic amyloidoses, providing a perspective on its present and future applications.