The re-emergence of sodium ion batteries: testing, processing, and manufacturability.

IF 4.9 Q2 NANOSCIENCE & NANOTECHNOLOGY Nanotechnology, Science and Applications Pub Date : 2018-06-01 eCollection Date: 2018-01-01 DOI:10.2147/NSA.S146365
Samuel Roberts, Emma Kendrick
{"title":"The re-emergence of sodium ion batteries: testing, processing, and manufacturability.","authors":"Samuel Roberts, Emma Kendrick","doi":"10.2147/NSA.S146365","DOIUrl":null,"url":null,"abstract":"<p><p>With the re-emergence of sodium ion batteries (NIBs), we discuss the reasons for the recent interests in this technology and discuss the synergies between lithium ion battery (LIB) and NIB technologies and the potential for NIB as a \"drop-in\" technology for LIB manufacturing. The electrochemical testing of sodium materials in sodium metal anode arrangements is reviewed. The performance, stability, and polarization of the sodium in these test cells lead to alternative testing in three-electrode and alternative anode cell configurations. NIB manufacturability is also discussed, together with the impact that the material stability has upon the electrodes and coating. Finally, full-cell NIB technologies are reviewed, and literature proof-of-concept cells give an idea of some of the key differences in the testing protocols of these batteries. For more commercially relevant formats, safety, passive voltage control through cell balancing and cell formation aspects are discussed.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/46/b5/nsa-11-023.PMC5989704.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology, Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/NSA.S146365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

With the re-emergence of sodium ion batteries (NIBs), we discuss the reasons for the recent interests in this technology and discuss the synergies between lithium ion battery (LIB) and NIB technologies and the potential for NIB as a "drop-in" technology for LIB manufacturing. The electrochemical testing of sodium materials in sodium metal anode arrangements is reviewed. The performance, stability, and polarization of the sodium in these test cells lead to alternative testing in three-electrode and alternative anode cell configurations. NIB manufacturability is also discussed, together with the impact that the material stability has upon the electrodes and coating. Finally, full-cell NIB technologies are reviewed, and literature proof-of-concept cells give an idea of some of the key differences in the testing protocols of these batteries. For more commercially relevant formats, safety, passive voltage control through cell balancing and cell formation aspects are discussed.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钠离子电池的重新出现:测试、加工和可制造性。
随着钠离子电池(NIB)的再次兴起,我们讨论了最近对该技术产生兴趣的原因,并讨论了锂离子电池(LIB)和 NIB 技术之间的协同作用,以及 NIB 作为锂离子电池制造的 "即插即用 "技术的潜力。回顾了钠金属负极布置中钠材料的电化学测试。这些测试电池中钠的性能、稳定性和极化导致了在三电极和替代阳极电池配置中的替代测试。此外,还讨论了 NIB 的可制造性,以及材料稳定性对电极和涂层的影响。最后,对全电芯无负极电池技术进行了回顾,并通过概念验证电池的文献介绍了这些电池测试协议中的一些关键差异。对于更具商业相关性的形式,还讨论了安全性、通过电池平衡进行无源电压控制以及电池化成等方面的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotechnology, Science and Applications
Nanotechnology, Science and Applications NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
11.70
自引率
0.00%
发文量
3
审稿时长
16 weeks
期刊介绍: Nanotechnology, Science and Applications is an international, peer-reviewed, Open Access journal that focuses on the science of nanotechnology in a wide range of industrial and academic applications. The journal is characterized by the rapid reporting of reviews, original research, and application studies across all sectors, including engineering, optics, bio-medicine, cosmetics, textiles, resource sustainability and science. Applied research into nano-materials, particles, nano-structures and fabrication, diagnostics and analytics, drug delivery and toxicology constitute the primary direction of the journal.
期刊最新文献
Antibacterial, Antibiofilm, and Tooth Color Preservation Capacity of Magnesium Oxide Nanoparticles Varnish (in vitro Study). Evaluation of the Antimicrobial, Cytotoxic, and Physical Properties of Selected Nano-Complexes in Bovine Udder Inflammatory Pathogen Control. Antihistamine and Wound Healing Potential of Gold Nanoparticles Synthesized Using Bulbine frutescens (L.) Willd. The Chemical Modification to Improve Solubility of Chitosan and Its Derivatives Application, Preparation Method, Toxicity as a Nanoparticles. Factors Affecting the Synthesis of Bovine Serum Albumin Nanoparticles Using the Desolvation Method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1