Dalia Holanda Chavez, Karla Juarez-Moreno, Gustavo Alonso Hirata
{"title":"Aminosilane Functionalization and Cytotoxicity Effects of Upconversion Nanoparticles Y<sub>2</sub>O<sub>3</sub> and Gd<sub>2</sub>O<sub>3</sub> Co-Doped with Yb<sup>3+</sup>and Er<sup>3</sup>.","authors":"Dalia Holanda Chavez, Karla Juarez-Moreno, Gustavo Alonso Hirata","doi":"10.5772/62252","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, luminescent upconversion nanoparticles (UCNPs) Y<sub>2</sub>O<sub>3</sub> and Gd<sub>2</sub>O<sub>3</sub> co-doped with Yb<sup>3+</sup> and Er<sup>3+</sup> were prepared by the sol-gel method (SG). These NPs are able to absorb near infrared photons and upconvert them into visible radiation with a direct application in bioimaging, as an important tool to diagnose and visualize cancer cells. The UCNPs were coated with a thin silica shell and functionalized with amino groups for further folic acid conjugation to allow their interaction with folate ligands on the cell surface. Their physical properties were analysed by Transmission Electron Microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and photoluminescence (PL) measurements. The PL results revealed excellent luminescence properties on all core-shell UCNPs. Cytotoxicity experiments with concentrations of bare and aminosilane coated/functionalized UCNPs between 0.001 μg/mL to 1 μg/mL were tested on two different cell lines from human cervix carcinoma (HeLa) and human colorectal adenocarcinoma (DLD-1) with a colorimetric assay based on the reduction of MTT reagent (methy-134-thiazolyltetrazolium). The assays show that some concentrations of bare UCNPs were cytotoxic for cervical adenocarcinoma cells (HeLa); however, for human colorectal adenocarcinoma all UCNPs are non-cytotoxic. After UCNPs functionalization with silica-aminosilane (APTES/TEOS), all of the nanoparticles tested were found to be non-cytotoxic for both cell lines. The UCNPs functionalized in this work can be further conjugated with specific ligands and used as biolabels for detection of cancer cells.</p>","PeriodicalId":56366,"journal":{"name":"Nanobiomedicine","volume":"3 ","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5772/62252","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanobiomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/62252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 28
Abstract
In this study, luminescent upconversion nanoparticles (UCNPs) Y2O3 and Gd2O3 co-doped with Yb3+ and Er3+ were prepared by the sol-gel method (SG). These NPs are able to absorb near infrared photons and upconvert them into visible radiation with a direct application in bioimaging, as an important tool to diagnose and visualize cancer cells. The UCNPs were coated with a thin silica shell and functionalized with amino groups for further folic acid conjugation to allow their interaction with folate ligands on the cell surface. Their physical properties were analysed by Transmission Electron Microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and photoluminescence (PL) measurements. The PL results revealed excellent luminescence properties on all core-shell UCNPs. Cytotoxicity experiments with concentrations of bare and aminosilane coated/functionalized UCNPs between 0.001 μg/mL to 1 μg/mL were tested on two different cell lines from human cervix carcinoma (HeLa) and human colorectal adenocarcinoma (DLD-1) with a colorimetric assay based on the reduction of MTT reagent (methy-134-thiazolyltetrazolium). The assays show that some concentrations of bare UCNPs were cytotoxic for cervical adenocarcinoma cells (HeLa); however, for human colorectal adenocarcinoma all UCNPs are non-cytotoxic. After UCNPs functionalization with silica-aminosilane (APTES/TEOS), all of the nanoparticles tested were found to be non-cytotoxic for both cell lines. The UCNPs functionalized in this work can be further conjugated with specific ligands and used as biolabels for detection of cancer cells.
NanobiomedicineBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.80
自引率
0.00%
发文量
1
审稿时长
14 weeks
期刊介绍:
Nanobiomedicine is an international, peer-reviewed, open access scientific journal that publishes research in nanotechnology as it interfaces with fundamental studies in biology, as well as its application to the fields of medicine. Nanobiomedicine covers all key aspects of this research field, including, but not limited to, bioengineering, biophysics, physical and biological chemistry, and physiology, as well as nanotechnological applications in diagnostics, therapeutic application, preventive medicine, drug delivery, and monitoring of human disease. Additionally, theoretical and modeling studies covering the nanobiomedicine fields will be considered. All submitted articles considered suitable for Nanobiomedicine are subjected to rigorous peer review to ensure the highest levels of quality. The review process is carried out as quickly as possible to minimize any delays in the online publication of articles. Submissions are encouraged on all topics related to nanobiomedicine, and its clinical applications including but not limited to: Nanoscale-structured biomaterials, Nanoscale bio-devices, Nanoscale imaging, Nanoscale drug delivery, Nanobiotechnology, Nanorobotics, Nanotoxicology, Nanoparticles, Nanocarriers, Nanofluidics, Nanosensors (nanowires, nanophotonics), Nanosurgery (dermatology, gastroenterology, ophthalmology, etc), Nanocarriers commercialization of nanobiomedical technologies, Market trends in the nanobiomedicine space, Ethics and regulatory aspects of nanobiomedicine approval, New perspectives of nanobiomedicine in clinical diagnostics, BioMEMS, Nano-coatings, Plasmonics, Nanoscale visualization.