Postnatal developmental dynamics of cell type specification genes in Brn3a/Pou4f1 Retinal Ganglion Cells.

IF 4 3区 生物学 Q1 DEVELOPMENTAL BIOLOGY Neural Development Pub Date : 2018-06-29 DOI:10.1186/s13064-018-0110-0
Vladimir Vladimirovich Muzyka, Matthew Brooks, Tudor Constantin Badea
{"title":"Postnatal developmental dynamics of cell type specification genes in Brn3a/Pou4f1 Retinal Ganglion Cells.","authors":"Vladimir Vladimirovich Muzyka,&nbsp;Matthew Brooks,&nbsp;Tudor Constantin Badea","doi":"10.1186/s13064-018-0110-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>About 20-30 distinct Retinal Ganglion Cell (RGC) types transmit visual information from the retina to the brain. The developmental mechanisms by which RGCs are specified are still largely unknown. Brn3a is a member of the Brn3/Pou4f transcription factor family, which contains key regulators of RGC postmitotic specification. In particular, Brn3a ablation results in the loss of RGCs with small, thick and dense dendritic arbors ('midget-like' RGCs), and morphological changes in other RGC subpopulations. To identify downstream molecular mechanisms underlying Brn3a effects on RGC numbers and morphology, our group recently performed a RNA deep sequencing screen for Brn3a transcriptional targets in mouse RGCs and identified 180 candidate transcripts.</p><p><strong>Methods: </strong>We now focus on a subset of 28 candidate genes encoding potential cell type determinant proteins. We validate and further define their retinal expression profile at five postnatal developmental time points between birth and adult stage, using in situ hybridization (ISH), RT-PCR and fluorescent immunodetection (IIF).</p><p><strong>Results: </strong>We find that a majority of candidate genes are enriched in the ganglion cell layer during early stages of postnatal development, but dynamically change their expression profile. We also document transcript-specific expression differences for two example candidates, using RT-PCR and ISH. Brn3a dependency could be confirmed by ISH and IIF only for a fraction of our candidates.</p><p><strong>Conclusions: </strong>Amongst our candidate Brn3a target genes, a majority demonstrated ganglion cell layer specificity, however only around two thirds showed Brn3a dependency. Some were previously implicated in RGC type specification, while others have known physiological functions in RGCs. Only three genes were found to be consistently regulated by Brn3a throughout postnatal retina development - Mapk10, Tusc5 and Cdh4.</p>","PeriodicalId":49764,"journal":{"name":"Neural Development","volume":"13 1","pages":"15"},"PeriodicalIF":4.0000,"publicationDate":"2018-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13064-018-0110-0","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13064-018-0110-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 15

Abstract

Background: About 20-30 distinct Retinal Ganglion Cell (RGC) types transmit visual information from the retina to the brain. The developmental mechanisms by which RGCs are specified are still largely unknown. Brn3a is a member of the Brn3/Pou4f transcription factor family, which contains key regulators of RGC postmitotic specification. In particular, Brn3a ablation results in the loss of RGCs with small, thick and dense dendritic arbors ('midget-like' RGCs), and morphological changes in other RGC subpopulations. To identify downstream molecular mechanisms underlying Brn3a effects on RGC numbers and morphology, our group recently performed a RNA deep sequencing screen for Brn3a transcriptional targets in mouse RGCs and identified 180 candidate transcripts.

Methods: We now focus on a subset of 28 candidate genes encoding potential cell type determinant proteins. We validate and further define their retinal expression profile at five postnatal developmental time points between birth and adult stage, using in situ hybridization (ISH), RT-PCR and fluorescent immunodetection (IIF).

Results: We find that a majority of candidate genes are enriched in the ganglion cell layer during early stages of postnatal development, but dynamically change their expression profile. We also document transcript-specific expression differences for two example candidates, using RT-PCR and ISH. Brn3a dependency could be confirmed by ISH and IIF only for a fraction of our candidates.

Conclusions: Amongst our candidate Brn3a target genes, a majority demonstrated ganglion cell layer specificity, however only around two thirds showed Brn3a dependency. Some were previously implicated in RGC type specification, while others have known physiological functions in RGCs. Only three genes were found to be consistently regulated by Brn3a throughout postnatal retina development - Mapk10, Tusc5 and Cdh4.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Brn3a/Pou4f1视网膜神经节细胞细胞类型特异性基因的出生后发育动态
背景:大约20-30种不同的视网膜神经节细胞(RGC)类型将视觉信息从视网膜传递到大脑。指定rgc的发育机制在很大程度上仍然是未知的。Brn3a是Brn3/Pou4f转录因子家族的成员,该家族包含RGC有丝分裂后规范的关键调节因子。特别是,Brn3a消融导致具有小、厚、密树突乔木的RGC(“小样”RGC)的丢失,以及其他RGC亚群的形态学改变。为了确定Brn3a对RGC数量和形态影响的下游分子机制,我们的团队最近对小鼠RGC中的Brn3a转录靶点进行了RNA深度测序筛选,并鉴定了180个候选转录物。方法:我们现在专注于28个候选基因的一个子集,编码潜在的细胞类型决定蛋白。我们使用原位杂交(ISH)、RT-PCR和荧光免疫检测(IIF)验证并进一步确定了它们在出生和成年阶段之间的五个出生后发育时间点的视网膜表达谱。结果:我们发现大多数候选基因在出生后发育早期在神经节细胞层富集,但动态改变其表达谱。我们还使用RT-PCR和ISH记录了两个候选样本的转录特异性表达差异。Brn3a依赖性只能通过ISH和IIF在小部分候选患者中得到证实。结论:在我们的候选Brn3a靶基因中,大多数表现出神经节细胞层特异性,但只有约三分之二表现出Brn3a依赖性。其中一些先前与RGC类型规范有关,而另一些在RGC中具有已知的生理功能。在整个出生后视网膜发育过程中,只有三个基因被Brn3a持续调节——Mapk10、Tusc5和Cdh4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Development
Neural Development 生物-发育生物学
CiteScore
6.60
自引率
0.00%
发文量
11
审稿时长
>12 weeks
期刊介绍: Neural Development is a peer-reviewed open access, online journal, which features studies that use molecular, cellular, physiological or behavioral methods to provide novel insights into the mechanisms that underlie the formation of the nervous system. Neural Development aims to discover how the nervous system arises and acquires the abilities to sense the world and control adaptive motor output. The field includes analysis of how progenitor cells form a nervous system during embryogenesis, and how the initially formed neural circuits are shaped by experience during early postnatal life. Some studies use well-established, genetically accessible model systems, but valuable insights are also obtained from less traditional models that provide behavioral or evolutionary insights.
期刊最新文献
Correction: Embryonic development of a centralised brain in coleoid cephalopods. Terminal differentiation precedes functional circuit integration in the peduncle neurons in regenerating Hydra vulgaris. Mapping the cellular expression patterns of vascular endothelial growth factor aa and bb genes and their receptors in the adult zebrafish brain during constitutive and regenerative neurogenesis LRRK2 kinase activity is necessary for development and regeneration in Nematostella vectensis. Correction: scMultiome analysis identifies a single caudal hindbrain compartment in the developing zebrafish nervous system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1