Context-Dependent Random Walk Graph Kernels and Tree Pattern Graph Matching Kernels With Applications to Action Recognition

Weiming Hu;Baoxin Wu;Pei Wang;Chunfeng Yuan;Yangxi Li;Stephen Maybank
{"title":"Context-Dependent Random Walk Graph Kernels and Tree Pattern Graph Matching Kernels With Applications to Action Recognition","authors":"Weiming Hu;Baoxin Wu;Pei Wang;Chunfeng Yuan;Yangxi Li;Stephen Maybank","doi":"10.1109/TIP.2018.2849885","DOIUrl":null,"url":null,"abstract":"Graphs are effective tools for modeling complex data. Setting out from two basic substructures, random walks and trees, we propose a new family of context-dependent random walk graph kernels and a new family of tree pattern graph matching kernels. In our context-dependent graph kernels, context information is incorporated into primary random walk groups. A multiple kernel learning algorithm with a proposed \n<inline-formula> <tex-math>$l_{1,2}$ </tex-math></inline-formula>\n-norm regularization is applied to combine context-dependent graph kernels of different orders. This improves the similarity measurement between graphs. In our tree-pattern graph matching kernel, a quadratic optimization with a sparse constraint is proposed to select the correctly matched tree-pattern groups. This augments the discriminative power of the tree-pattern graph matching. We apply the proposed kernels to human action recognition, where each action is represented by two graphs which record the spatiotemporal relations between local feature vectors. Experimental comparisons with state-of-the-art algorithms on several benchmark data sets demonstrate the effectiveness of the proposed kernels for recognizing human actions. It is shown that our kernel based on tree-pattern groups, which have more complex structures and exploit more local topologies of graphs than random walks, yields more accurate results but requires more runtime than the context-dependent walk graph kernel.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"27 10","pages":"5060-5075"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TIP.2018.2849885","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/8392772/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Graphs are effective tools for modeling complex data. Setting out from two basic substructures, random walks and trees, we propose a new family of context-dependent random walk graph kernels and a new family of tree pattern graph matching kernels. In our context-dependent graph kernels, context information is incorporated into primary random walk groups. A multiple kernel learning algorithm with a proposed $l_{1,2}$ -norm regularization is applied to combine context-dependent graph kernels of different orders. This improves the similarity measurement between graphs. In our tree-pattern graph matching kernel, a quadratic optimization with a sparse constraint is proposed to select the correctly matched tree-pattern groups. This augments the discriminative power of the tree-pattern graph matching. We apply the proposed kernels to human action recognition, where each action is represented by two graphs which record the spatiotemporal relations between local feature vectors. Experimental comparisons with state-of-the-art algorithms on several benchmark data sets demonstrate the effectiveness of the proposed kernels for recognizing human actions. It is shown that our kernel based on tree-pattern groups, which have more complex structures and exploit more local topologies of graphs than random walks, yields more accurate results but requires more runtime than the context-dependent walk graph kernel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
上下文相关随机游动图核和树状图匹配核在动作识别中的应用
图形是对复杂数据建模的有效工具。从随机游动和树这两个基本子结构出发,我们提出了一个新的上下文相关随机游动图核族和一个树模式图匹配核族。在我们的上下文相关图内核中,上下文信息被合并到主随机游动组中。将一种具有$l_{1,2}$范数正则化的多核学习算法应用于组合不同阶的上下文相关图核。这改进了图之间的相似性度量。在我们的树模式图匹配核中,提出了一种具有稀疏约束的二次优化方法来选择正确匹配的树模式组。这增强了树模式图匹配的判别能力。我们将所提出的核应用于人类动作识别,其中每个动作由两个图表示,这两个图记录了局部特征向量之间的时空关系。在几个基准数据集上与最先进的算法进行的实验比较证明了所提出的内核在识别人类行为方面的有效性。结果表明,我们基于树模式组的内核比随机遍历具有更复杂的结构,并利用了更多的图的局部拓扑,它产生了更准确的结果,但比依赖上下文的遍历图内核需要更多的运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HSLabeling: Towards Efficient Labeling for Large-scale Remote Sensing Image Segmentation with Hybrid Sparse Labeling. Visual Quality Assessment of Composite Images: A Compression-Oriented Database and Measurement. Zerotree Coding of Subdivision Wavelet Coefficients in Dynamic Time-Varying Meshes Event-Based Video Reconstruction With Deep Spatial-Frequency Unfolding Network Raformer: Redundancy-Aware Transformer for Video Wire Inpainting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1