Post-marketing Drug Safety Evaluation using Data Mining Based on FAERS.

Rui Duan, Xinyuan Zhang, Jingcheng Du, Jing Huang, Cui Tao, Yong Chen
{"title":"Post-marketing Drug Safety Evaluation using Data Mining Based on FAERS.","authors":"Rui Duan,&nbsp;Xinyuan Zhang,&nbsp;Jingcheng Du,&nbsp;Jing Huang,&nbsp;Cui Tao,&nbsp;Yong Chen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Healthcare is going through a big data revolution. The amount of data generated by healthcare is expected to increase significantly in the coming years. Therefore, efficient and effective data processing methods are required to transform data into information. In addition, applying statistical analysis can transform the information into useful knowledge. We developed a data mining method that can uncover new knowledge in this enormous field for clinical decision making while generating scientific methods and hypotheses. The proposed pipeline can be generally applied to a variety of data mining tasks in medical informatics. For this study, we applied the proposed pipeline for post-marketing surveillance on drug safety using FAERS, the data warehouse created by FDA. We used 14 kinds of neurology drugs to illustrate our methods. Our result indicated that this approach can successfully reveal insight for further drug safety evaluation.</p>","PeriodicalId":92347,"journal":{"name":"Data Mining and Big Data : second International Conference, DMBD 2017, Fukuoka, Japan, July 27-August 1, 2017. Proceedings. DMBD (Conference) (2nd : 2017 : Fukuoka, Japan)","volume":"2017 ","pages":"379-389"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6054455/pdf/nihms940620.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Mining and Big Data : second International Conference, DMBD 2017, Fukuoka, Japan, July 27-August 1, 2017. Proceedings. DMBD (Conference) (2nd : 2017 : Fukuoka, Japan)","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/6/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Healthcare is going through a big data revolution. The amount of data generated by healthcare is expected to increase significantly in the coming years. Therefore, efficient and effective data processing methods are required to transform data into information. In addition, applying statistical analysis can transform the information into useful knowledge. We developed a data mining method that can uncover new knowledge in this enormous field for clinical decision making while generating scientific methods and hypotheses. The proposed pipeline can be generally applied to a variety of data mining tasks in medical informatics. For this study, we applied the proposed pipeline for post-marketing surveillance on drug safety using FAERS, the data warehouse created by FDA. We used 14 kinds of neurology drugs to illustrate our methods. Our result indicated that this approach can successfully reveal insight for further drug safety evaluation.

Abstract Image

Abstract Image

Abstract Image

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于FAERS的数据挖掘上市后药品安全性评价。
医疗保健正在经历一场大数据革命。预计在未来几年,医疗保健产生的数据量将显著增加。因此,需要高效有效的数据处理方法将数据转化为信息。此外,应用统计分析可以将信息转化为有用的知识。我们开发了一种数据挖掘方法,可以在产生科学方法和假设的同时,在这个巨大的临床决策领域发现新的知识。该管道可广泛应用于医学信息学中的各种数据挖掘任务。在本研究中,我们使用FAERS (FDA创建的数据仓库)应用拟议的药物上市后安全性监测管道。我们用14种神经学药物来说明我们的方法。我们的结果表明,该方法可以成功地为进一步的药物安全性评价提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data Mining and Big Data: 7th International Conference, DMBD 2022, Beijing, China, November 21–24, 2022, Proceedings, Part I Data Mining and Big Data: 7th International Conference, DMBD 2022, Beijing, China, November 21–24, 2022, Proceedings, Part II Data Mining and Big Data: 6th International Conference, DMBD 2021, Guangzhou, China, October 20–22, 2021, Proceedings, Part I Data Mining and Big Data: 6th International Conference, DMBD 2021, Guangzhou, China, October 20–22, 2021, Proceedings, Part II Retraction Note to: Chapters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1