Kojiro Ishibashi, Riku Egami, Kazuki Nakai, Shunsuke Kon
{"title":"An Anti-tumorigenic Role of the Warburg Effect at Emergence of Transformed Cells.","authors":"Kojiro Ishibashi, Riku Egami, Kazuki Nakai, Shunsuke Kon","doi":"10.1247/csf.18018","DOIUrl":null,"url":null,"abstract":"<p><p>The Warburg effect is one of the hallmarks of cancer cells, characterized by enhanced aerobic glycolysis. Despite intense research efforts, its functional relevance or biological significance to facilitate tumor progression is still debatable. Hence the question persists when and how the Warburg effect contributes to carcinogenesis. Especially, the role of metabolic changes at a very early stage of tumorigenesis has received relatively little attention, and how aerobic glycolysis impacts tumor incidence remains largely unknown. Here we discuss a novel paradigm for the effect of the Warburg effect that provides a suppressive role in oncogenesis.Key words: Warburg effect, aerobic glycolysis, cell competition, EDAC.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1247/csf.18018","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1247/csf.18018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 6
Abstract
The Warburg effect is one of the hallmarks of cancer cells, characterized by enhanced aerobic glycolysis. Despite intense research efforts, its functional relevance or biological significance to facilitate tumor progression is still debatable. Hence the question persists when and how the Warburg effect contributes to carcinogenesis. Especially, the role of metabolic changes at a very early stage of tumorigenesis has received relatively little attention, and how aerobic glycolysis impacts tumor incidence remains largely unknown. Here we discuss a novel paradigm for the effect of the Warburg effect that provides a suppressive role in oncogenesis.Key words: Warburg effect, aerobic glycolysis, cell competition, EDAC.