{"title":"Medical Image Blind Integrity Verification with Krawtchouk Moments.","authors":"Xu Zhang, Xilin Liu, Yang Chen, Huazhong Shu","doi":"10.1155/2018/2572431","DOIUrl":null,"url":null,"abstract":"<p><p>A new blind integrity verification method for medical image is proposed in this paper. It is based on a new kind of image features, known as Krawtchouk moments, which we use to distinguish the original images from the modified ones. Basically, with our scheme, image integrity verification is accomplished by classifying images into the original and modified categories. Experiments conducted on medical images issued from different modalities verified the validity of the proposed method and demonstrated that it can be used to detect and discriminate image modifications of different types with high accuracy. We also compared the performance of our scheme with a state-of-the-art solution suggested for medical images-solution that is based on histogram statistical properties of reorganized block-based Tchebichef moments. Conducted tests proved the better behavior of our image feature set.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2018 ","pages":"2572431"},"PeriodicalIF":3.3000,"publicationDate":"2018-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/2572431","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/2572431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 5
Abstract
A new blind integrity verification method for medical image is proposed in this paper. It is based on a new kind of image features, known as Krawtchouk moments, which we use to distinguish the original images from the modified ones. Basically, with our scheme, image integrity verification is accomplished by classifying images into the original and modified categories. Experiments conducted on medical images issued from different modalities verified the validity of the proposed method and demonstrated that it can be used to detect and discriminate image modifications of different types with high accuracy. We also compared the performance of our scheme with a state-of-the-art solution suggested for medical images-solution that is based on histogram statistical properties of reorganized block-based Tchebichef moments. Conducted tests proved the better behavior of our image feature set.
期刊介绍:
The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to):
Digital radiography and tomosynthesis
X-ray computed tomography (CT)
Magnetic resonance imaging (MRI)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Ultrasound imaging
Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography
Neutron imaging for biomedical applications
Magnetic and optical spectroscopy, and optical biopsy
Optical, electron, scanning tunneling/atomic force microscopy
Small animal imaging
Functional, cellular, and molecular imaging
Imaging assays for screening and molecular analysis
Microarray image analysis and bioinformatics
Emerging biomedical imaging techniques
Imaging modality fusion
Biomedical imaging instrumentation
Biomedical image processing, pattern recognition, and analysis
Biomedical image visualization, compression, transmission, and storage
Imaging and modeling related to systems biology and systems biomedicine
Applied mathematics, applied physics, and chemistry related to biomedical imaging
Grid-enabling technology for biomedical imaging and informatics