{"title":"Systemic Gene Delivery by Single-Dose Intracardiac Administration of scAAV2/9 and scAAV2/rh10 Variants in Newborn Rats.","authors":"Lucie Chansel-Debordeaux, Mathieu Bourdenx, Nathalie Dutheil, Sandra Dovero, Marie-Helene Canron, Clement Jimenez, Erwan Bezard, Benjamin Dehay","doi":"10.1089/hgtb.2017.192.r3","DOIUrl":null,"url":null,"abstract":"<p><p>Recombinant adeno-associated virus serotype 9 (rAAV2/9) and pseudotype rhesus-10 (rAAV2/rh10) are used for gene delivery, especially into the central nervous system. Both serotypes cross the blood-brain barrier and mediate stable long-term transduction in dividing and nondividing cells. Among possible routes of administration, intracardiac injection holds the potential for widespread vector diffusion associated with a relatively simple approach. In this study adopting the intracardiac route, we compare the cell-specific tropism and transfection efficacy of a panel of engineered rAAV2/9 and rAAV2/rh10 vectors encoding the enhanced green fluorescent protein. We observed transduction in the brain and peripherally, with a predominant neuronal tropism while the various serotypes achieved different expression patterns.</p>","PeriodicalId":13126,"journal":{"name":"Human Gene Therapy Methods","volume":"29 4","pages":"189-199"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/hgtb.2017.192.r3","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Gene Therapy Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/hgtb.2017.192.r3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 1
Abstract
Recombinant adeno-associated virus serotype 9 (rAAV2/9) and pseudotype rhesus-10 (rAAV2/rh10) are used for gene delivery, especially into the central nervous system. Both serotypes cross the blood-brain barrier and mediate stable long-term transduction in dividing and nondividing cells. Among possible routes of administration, intracardiac injection holds the potential for widespread vector diffusion associated with a relatively simple approach. In this study adopting the intracardiac route, we compare the cell-specific tropism and transfection efficacy of a panel of engineered rAAV2/9 and rAAV2/rh10 vectors encoding the enhanced green fluorescent protein. We observed transduction in the brain and peripherally, with a predominant neuronal tropism while the various serotypes achieved different expression patterns.
期刊介绍:
Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases.
The Journal is divided into three parts. Human Gene Therapy, the flagship, is published 12 times per year. HGT Methods, a bimonthly journal, focuses on the applications of gene therapy to product testing and development. HGT Clinical Development, a quarterly journal, serves as a venue for publishing data relevant to the regulatory review and commercial development of cell and gene therapy products.