Architecture and Implementation of a Clinical Research Data Warehouse for Prostate Cancer.

Martin G Seneviratne, Tina Seto, Douglas W Blayney, James D Brooks, Tina Hernandez-Boussard
{"title":"Architecture and Implementation of a Clinical Research Data Warehouse for Prostate Cancer.","authors":"Martin G Seneviratne,&nbsp;Tina Seto,&nbsp;Douglas W Blayney,&nbsp;James D Brooks,&nbsp;Tina Hernandez-Boussard","doi":"10.5334/egems.234","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Electronic health record (EHR) based research in oncology can be limited by missing data and a lack of structured data elements. Clinical research data warehouses for specific cancer types can enable the creation of more robust research cohorts.</p><p><strong>Methods: </strong>We linked data from the Stanford University EHR with the Stanford Cancer Institute Research Database (SCIRDB) and the California Cancer Registry (CCR) to create a research data warehouse for prostate cancer. The database was supplemented with information from clinical trials, natural language processing of clinical notes and surveys on patient-reported outcomes.</p><p><strong>Results: </strong>11,898 unique prostate cancer patients were identified in the Stanford EHR, of which 3,936 were matched to the Stanford cancer registry and 6153 in the CCR. 7158 patients with EHR data and at least one of SCIRDB and CCR data were initially included in the warehouse.</p><p><strong>Conclusions: </strong>A disease-specific clinical research data warehouse combining multiple data sources can facilitate secondary data use and enhance observational research in oncology.</p>","PeriodicalId":72880,"journal":{"name":"EGEMS (Washington, DC)","volume":" ","pages":"13"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5334/egems.234","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EGEMS (Washington, DC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/egems.234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Background: Electronic health record (EHR) based research in oncology can be limited by missing data and a lack of structured data elements. Clinical research data warehouses for specific cancer types can enable the creation of more robust research cohorts.

Methods: We linked data from the Stanford University EHR with the Stanford Cancer Institute Research Database (SCIRDB) and the California Cancer Registry (CCR) to create a research data warehouse for prostate cancer. The database was supplemented with information from clinical trials, natural language processing of clinical notes and surveys on patient-reported outcomes.

Results: 11,898 unique prostate cancer patients were identified in the Stanford EHR, of which 3,936 were matched to the Stanford cancer registry and 6153 in the CCR. 7158 patients with EHR data and at least one of SCIRDB and CCR data were initially included in the warehouse.

Conclusions: A disease-specific clinical research data warehouse combining multiple data sources can facilitate secondary data use and enhance observational research in oncology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
前列腺癌临床研究数据仓库的架构与实现。
背景:基于电子健康记录(EHR)的肿瘤学研究可能受到数据缺失和缺乏结构化数据元素的限制。针对特定癌症类型的临床研究数据仓库可以创建更强大的研究队列。方法:我们将斯坦福大学电子病历与斯坦福癌症研究所研究数据库(SCIRDB)和加州癌症登记处(CCR)的数据联系起来,创建一个前列腺癌的研究数据仓库。该数据库还补充了来自临床试验、临床记录的自然语言处理和对患者报告结果的调查的信息。结果:11898名独特的前列腺癌患者在斯坦福EHR中被确定,其中3936名与斯坦福癌症登记处匹配,6153名在CCR中匹配。7158例具有EHR数据和SCIRDB和CCR数据中至少一项的患者最初被纳入数据库。结论:多数据源结合的疾病特异性临床研究数据仓库可以促进二次数据的使用,加强肿瘤学的观察研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementing a Novel Quality Improvement-Based Approach to Data Quality Monitoring and Enhancement in a Multipurpose Clinical Registry. A Spatial Analysis of Health Disparities Associated with Antibiotic Resistant Infections in Children Living in Atlanta (2002–2010) Predicting the Incidence of Pressure Ulcers in the Intensive Care Unit Using Machine Learning Applying a Commercialization-Readiness Framework to Optimize Value for Achieving Sustainability of an Electronic Health Data Research Network and Its Data Capabilities: The SAFTINet Experience. Innovative Data Science to Transform Health Care: All the Pieces Matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1