Morphogenic Regulator-Mediated Transformation of Maize Inbred B73

Q1 Agricultural and Biological Sciences Current protocols in plant biology Pub Date : 2018-10-22 DOI:10.1002/cppb.20075
Muruganantham Mookkan, Kimberly Nelson-Vasilchik, Joel Hague, Albert Kausch, Zhanyuan J. Zhang
{"title":"Morphogenic Regulator-Mediated Transformation of Maize Inbred B73","authors":"Muruganantham Mookkan,&nbsp;Kimberly Nelson-Vasilchik,&nbsp;Joel Hague,&nbsp;Albert Kausch,&nbsp;Zhanyuan J. Zhang","doi":"10.1002/cppb.20075","DOIUrl":null,"url":null,"abstract":"<p>Maize B73 is a reference genome and has long been a major resource for genetics and molecular biology research. We have developed an efficient B73 transformation protocol by enabling somatic embryogenesis through differential co-expression of maize morphogenic regulators <i>BBM</i> and <i>WUS2</i>. We describe a successful protocol that utilizes <i>Agrobacterium tumefaciens</i> strain AGL1 harboring binary vector PHP78891 that comprises a <i>BBM</i> and <i>WUS2</i> expression cassette as well as a green fluorescent protein (<i>GFP</i>) reporter cassette. The PHP78891 vector also contains, within the T-DNA region, a <i>CRE/lox</i> recombination system flanking the CRE/<i>BBM/WUS2</i> co-expression cassette driven by the desiccation inducible <i>RAB</i>17 promoter that allows removal of the <i>BBM/WUS2</i> cassette. Introduction and co-expression of <i>BBM</i> and <i>WUS2</i> induced direct somatic embryogenesis (SE) in non-regenerable maize B73 from immature embryo explants. Removal of the <i>CRE/BBM/WUS2</i> cassette is essential to allow regeneration to fertile plants. The <i>GFP</i> expression cassette outside the <i>lox</i> excision sites is retained in the transgenic plant genome, allowing subsequent phenotypic analysis of calli and regenerated transgenic events. This transformation system enables a selectable marker-free transformation process by taking advantage of <i>BBM/WUS2</i>-induced SE as a developmental selection system. © 2018 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":10932,"journal":{"name":"Current protocols in plant biology","volume":"3 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cppb.20075","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in plant biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cppb.20075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 8

Abstract

Maize B73 is a reference genome and has long been a major resource for genetics and molecular biology research. We have developed an efficient B73 transformation protocol by enabling somatic embryogenesis through differential co-expression of maize morphogenic regulators BBM and WUS2. We describe a successful protocol that utilizes Agrobacterium tumefaciens strain AGL1 harboring binary vector PHP78891 that comprises a BBM and WUS2 expression cassette as well as a green fluorescent protein (GFP) reporter cassette. The PHP78891 vector also contains, within the T-DNA region, a CRE/lox recombination system flanking the CRE/BBM/WUS2 co-expression cassette driven by the desiccation inducible RAB17 promoter that allows removal of the BBM/WUS2 cassette. Introduction and co-expression of BBM and WUS2 induced direct somatic embryogenesis (SE) in non-regenerable maize B73 from immature embryo explants. Removal of the CRE/BBM/WUS2 cassette is essential to allow regeneration to fertile plants. The GFP expression cassette outside the lox excision sites is retained in the transgenic plant genome, allowing subsequent phenotypic analysis of calli and regenerated transgenic events. This transformation system enables a selectable marker-free transformation process by taking advantage of BBM/WUS2-induced SE as a developmental selection system. © 2018 by John Wiley & Sons, Inc.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
形态发生调控因子介导的玉米自交系B73的转化
玉米B73是一种参考基因组,长期以来一直是遗传学和分子生物学研究的重要资源。我们开发了一种高效的B73转化方案,通过玉米形态发生调控因子BBM和WUS2的差异共表达,实现体胚发生。我们描述了一种成功的方案,利用农杆菌肿瘤菌株AGL1携带二进制载体PHP78891,包括BBM和WUS2表达盒以及绿色荧光蛋白(GFP)报告盒。PHP78891载体在T-DNA区域内还包含一个CRE/lox重组系统,该重组系统位于CRE/BBM/WUS2共表达盒的两侧,CRE/BBM/WUS2共表达盒由干燥诱导的RAB17启动子驱动,该启动子允许去除BBM/WUS2盒。BBM和WUS2的引入和共表达诱导了玉米B73未成熟胚外植体的直接体细胞胚发生(SE)。去除CRE/BBM/WUS2盒对于使可育植物再生至关重要。lox切除位点外的GFP表达盒保留在转基因植物基因组中,允许随后对愈伤组织和再生转基因事件进行表型分析。该转化系统利用BBM/ wus2诱导的SE作为一种发育选择系统,实现了可选择的无标记转化过程。©2018 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current protocols in plant biology
Current protocols in plant biology Agricultural and Biological Sciences-Plant Science
自引率
0.00%
发文量
0
期刊介绍: Sound and reproducible laboratory methods are the foundation of scientific discovery. Yet nuances that are critical for an experiment''s success are not captured in the primary literature but exist only as part of a lab''s oral tradition. Current Protocols in Plant Biology provides reproducible step-by-step instructions for protocols relevant to plant research. Furthermore, Current Protocols content is thoughtfully organized by topic for optimal usage and to maximize contextual knowledge. Quarterly issues allow Current Protocols in Plant Biology to constantly evolve to keep pace with the newest discoveries and developments. Current Protocols in Plant Biology is the comprehensive source for protocols in the multidisciplinary field of plant biology, providing an extensive range of protocols from basic to cutting edge. Coverage includes: Extraction and analysis of DNA, RNA, proteins Chromosome analysis Transcriptional analysis Protein expression Metabolites Plant enzymology Epigenetics Plant genetic transformation Mutagenesis Arabidopsis, Maize, Poplar, Rice, and Soybean, and more.
期刊最新文献
Issue Information Isolation, Library Preparation, and Bioinformatic Analysis of Historical and Ancient Plant DNA Isolation of Plant Root Nuclei for Single Cell RNA Sequencing Selective Enrichment Coupled with Proteomics to Identify S-Acylated Plasma Membrane Proteins in Arabidopsis In-Plate Quantitative Characterization of Arabidopsis thaliana Susceptibility to the Fungal Vascular Pathogen Fusarium oxysporum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1