Tumor Spheres Quantification with Smoothed Euclidean Distance Transform.

Journal of molecular imaging & dynamics Pub Date : 2018-01-01 Epub Date: 2018-07-06 DOI:10.4172/2155-9937.1000143
Ismet Sahin, Yu Zhang, Florencia McAllister
{"title":"Tumor Spheres Quantification with Smoothed Euclidean Distance Transform.","authors":"Ismet Sahin,&nbsp;Yu Zhang,&nbsp;Florencia McAllister","doi":"10.4172/2155-9937.1000143","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor sphere quantification plays an important role in cancer research and drugs screening. Even though the number and size of tumor spheres can be found manually, this process is time-consuming, prone to making errors, and may not be viable when the number of images is very large. This manuscript presents a method for automated quantification of spheres with a novel segmentation technique. The segmentation method relies on initial watershed algorithm which detects the minima of the distance transform and finds a tumor sphere for each minimum. Due to the irregular edges of tumor spheres, the distance transform matrix has often more number of minima than the true number of spheres. This leads to the over segmentation problem. The proposed approach uses the smoothed form of the distance transform to effectively eliminate superfluous minima and then seeds the watershed algorithm with the remaining minima. The proposed method was validated over pancreatic tumor spheres images achieving high efficiency for tumor spheres quantification.</p>","PeriodicalId":91553,"journal":{"name":"Journal of molecular imaging & dynamics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2155-9937.1000143","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular imaging & dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-9937.1000143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tumor sphere quantification plays an important role in cancer research and drugs screening. Even though the number and size of tumor spheres can be found manually, this process is time-consuming, prone to making errors, and may not be viable when the number of images is very large. This manuscript presents a method for automated quantification of spheres with a novel segmentation technique. The segmentation method relies on initial watershed algorithm which detects the minima of the distance transform and finds a tumor sphere for each minimum. Due to the irregular edges of tumor spheres, the distance transform matrix has often more number of minima than the true number of spheres. This leads to the over segmentation problem. The proposed approach uses the smoothed form of the distance transform to effectively eliminate superfluous minima and then seeds the watershed algorithm with the remaining minima. The proposed method was validated over pancreatic tumor spheres images achieving high efficiency for tumor spheres quantification.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于光滑欧氏距离变换的肿瘤球定量。
肿瘤球定量在肿瘤研究和药物筛选中起着重要作用。尽管可以手动找到肿瘤球的数量和大小,但这个过程耗时,容易出错,并且当图像数量非常大时可能不可行。本文提出了一种新的球体分割技术的自动定量方法。该分割方法依赖于初始分水岭算法,该算法检测距离变换的最小值,并为每个最小值找到一个肿瘤球。由于肿瘤球的边缘不规则,距离变换矩阵的最小值数往往大于真实球数。这就导致了过度分割问题。该方法利用距离变换的平滑形式有效地去除多余的最小值,然后用剩余的最小值播种分水岭算法。该方法在胰腺肿瘤球图像上进行了验证,具有较高的定量效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Soft Supramolecular Nanostructures by Molecular Simulations Molecular Dynamics Simulations to Study Drug Delivery Systems Introductory Chapter: Molecular Dynamics: Basic Tool of Nanotechnology Simulations for “Production 4.0” Revolution Atomic Mechanisms Governing Strength of Metallic Nanosized Crystals Effects of Voids in Tensile Single-Crystal Cu Nanobeams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1