下载PDF
{"title":"High-Throughput Analysis of Behavior Under the Control of Optogenetics in Caenorhabditis elegans","authors":"Alex J. Yu, Troy A. McDiarmid, Evan L. Ardiel, Catharine H. Rankin","doi":"10.1002/cpns.57","DOIUrl":null,"url":null,"abstract":"<p>In this unit, we describe an inexpensive and versatile method for optogenetic stimulation of a large population of genetically engineered <i>Caenorhabditis elegans</i> worms while quantitatively analyzing behavior. A custom light-emitting diode light source is used to deliver blue-light stimuli, causing direct depolarization of neurons expressing the light-gated cation channel Channelrhodopsin-2, which in turn evokes behavioral responses. The behavioral responses are recorded by a high-throughput machine vision–based tracking system, the Multi-Worm Tracker, for detailed analysis. This approach allows researchers to bypass technical obstacles to simultaneously deliver uniform stimuli to a large number of freely behaving animals and investigate the neural underpinnings of behavior. © 2018 by John Wiley & Sons, Inc.</p>","PeriodicalId":40016,"journal":{"name":"Current Protocols in Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpns.57","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpns.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 8
引用
批量引用
Abstract
In this unit, we describe an inexpensive and versatile method for optogenetic stimulation of a large population of genetically engineered Caenorhabditis elegans worms while quantitatively analyzing behavior. A custom light-emitting diode light source is used to deliver blue-light stimuli, causing direct depolarization of neurons expressing the light-gated cation channel Channelrhodopsin-2, which in turn evokes behavioral responses. The behavioral responses are recorded by a high-throughput machine vision–based tracking system, the Multi-Worm Tracker, for detailed analysis. This approach allows researchers to bypass technical obstacles to simultaneously deliver uniform stimuli to a large number of freely behaving animals and investigate the neural underpinnings of behavior. © 2018 by John Wiley & Sons, Inc.
秀丽隐杆线虫光遗传学控制下行为的高通量分析
在本单元中,我们描述了一种廉价且通用的方法,用于光遗传刺激大量基因工程秀丽隐杆线虫,同时定量分析其行为。一个定制的发光二极管光源用于传递蓝光刺激,引起表达光门控阳离子通道channel rhodopin -2的神经元的直接去极化,从而引发行为反应。行为反应记录由一个高通量的基于机器视觉的跟踪系统,多蠕虫跟踪器,详细分析。这种方法使研究人员能够绕过技术障碍,同时向大量行为自由的动物提供统一的刺激,并研究行为的神经基础。©2018 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。