{"title":"G protein-coupled receptors mediate neural regulation of innate immune responses in <i>caenorhabditis elegans</i>.","authors":"Yiyong Liu, Jingru Sun","doi":"10.14800/rci.1543","DOIUrl":null,"url":null,"abstract":"<p><p>G protein-coupled receptors (GPCRs) are a large family of transmembrane proteins that perceive many extracellular signals and transduce them into cellular physiological responses. GPCRs regulate immunity in both vertebrates and invertebrates. However, the mechanisms responsible for such regulation are not fully understood. Recent research using the genetically tractable model organism <i>Caenorhabditis elegans</i> has led to the identification of specific GPCRs, neurotransmitters, neurons and non-neural cells in the regulation of innate immunity. Several neural circuits have been demonstrated to function in GPCR-dependent immuno-regulatory pathways. Besides being essential in neural-immune interactions, GPCRs also regulate innate immune response in non-neural tissues cell-autonomously through mechanisms independent of neural circuits. Here we review GPCR-mediated neural control of innate immunity in <i>C. elegans</i> and briefly discuss GPCR-dependent immune regulation via non-neural mechanisms.</p>","PeriodicalId":74650,"journal":{"name":"Receptors & clinical investigation","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6206870/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Receptors & clinical investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14800/rci.1543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/5/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
G protein-coupled receptors (GPCRs) are a large family of transmembrane proteins that perceive many extracellular signals and transduce them into cellular physiological responses. GPCRs regulate immunity in both vertebrates and invertebrates. However, the mechanisms responsible for such regulation are not fully understood. Recent research using the genetically tractable model organism Caenorhabditis elegans has led to the identification of specific GPCRs, neurotransmitters, neurons and non-neural cells in the regulation of innate immunity. Several neural circuits have been demonstrated to function in GPCR-dependent immuno-regulatory pathways. Besides being essential in neural-immune interactions, GPCRs also regulate innate immune response in non-neural tissues cell-autonomously through mechanisms independent of neural circuits. Here we review GPCR-mediated neural control of innate immunity in C. elegans and briefly discuss GPCR-dependent immune regulation via non-neural mechanisms.