A prospective study of weekly intensity modulated radiation therapy plan adaptation for head and neck cancer: improved target coverage and organ at risk sparing.
{"title":"A prospective study of weekly intensity modulated radiation therapy plan adaptation for head and neck cancer: improved target coverage and organ at risk sparing.","authors":"F Aly, A A Miller, M G Jameson, P E Metcalfe","doi":"10.1007/s13246-018-0707-y","DOIUrl":null,"url":null,"abstract":"<p><p>This prospective study of weekly CT scanning and plan adaption during H&N IMRT reports on the frequency of plan adaptations based on dosimetric differences between original and re-optimised IMRT plans. The volumetric and geometric change occurring in target volumes and salivary glands is also described. Ten H&N cancer patients underwent weekly planning CT imaging and re-optimisation of the IMRT plan if PTV or OAR coverage was unacceptable. Comparisons of PTV and parotid gland dosimetry between the original and adaptive plans were made. Parotid and submandibular gland volume changes and shift were calculated. Eight of ten patients required one or more plan adaptations, with 41% of adaptations occurring by fraction ten. Salivary glands reduced in volume, with a medial shift of the lateral border of the parotid gland and a superior shift of the submandibular gland. Change in PTV coverage did not correlate with weight loss or nutritional score. Inadequate PTV coverage, requiring plan adaptation, occurs early in the course of IMRT. A weekly Adaptive RT (ART) protocol results in significant improvement of PTV coverage. Implementation of a clinical ART protocol should include imaging and dose calculation within the first ten fractions.</p>","PeriodicalId":55430,"journal":{"name":"Australasian Physical & Engineering Sciences in Medicine","volume":"42 1","pages":"43-51"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13246-018-0707-y","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Physical & Engineering Sciences in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13246-018-0707-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/11/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 8
Abstract
This prospective study of weekly CT scanning and plan adaption during H&N IMRT reports on the frequency of plan adaptations based on dosimetric differences between original and re-optimised IMRT plans. The volumetric and geometric change occurring in target volumes and salivary glands is also described. Ten H&N cancer patients underwent weekly planning CT imaging and re-optimisation of the IMRT plan if PTV or OAR coverage was unacceptable. Comparisons of PTV and parotid gland dosimetry between the original and adaptive plans were made. Parotid and submandibular gland volume changes and shift were calculated. Eight of ten patients required one or more plan adaptations, with 41% of adaptations occurring by fraction ten. Salivary glands reduced in volume, with a medial shift of the lateral border of the parotid gland and a superior shift of the submandibular gland. Change in PTV coverage did not correlate with weight loss or nutritional score. Inadequate PTV coverage, requiring plan adaptation, occurs early in the course of IMRT. A weekly Adaptive RT (ART) protocol results in significant improvement of PTV coverage. Implementation of a clinical ART protocol should include imaging and dose calculation within the first ten fractions.
期刊介绍:
Australasian Physical & Engineering Sciences in Medicine (APESM) is a multidisciplinary forum for information and research on the application of physics and engineering to medicine and human physiology. APESM covers a broad range of topics that include but is not limited to:
- Medical physics in radiotherapy
- Medical physics in diagnostic radiology
- Medical physics in nuclear medicine
- Mathematical modelling applied to medicine and human biology
- Clinical biomedical engineering
- Feature extraction, classification of EEG, ECG, EMG, EOG, and other biomedical signals;
- Medical imaging - contributions to new and improved methods;
- Modelling of physiological systems
- Image processing to extract information from images, e.g. fMRI, CT, etc.;
- Biomechanics, especially with applications to orthopaedics.
- Nanotechnology in medicine
APESM offers original reviews, scientific papers, scientific notes, technical papers, educational notes, book reviews and letters to the editor.
APESM is the journal of the Australasian College of Physical Scientists and Engineers in Medicine, and also the official journal of the College of Biomedical Engineers, Engineers Australia and the Asia-Oceania Federation of Organizations for Medical Physics.