Multiband ultra-thin flexible on-body transceivers for wearable health informatics.

Q3 Biochemistry, Genetics and Molecular Biology Australasian Physical & Engineering Sciences in Medicine Pub Date : 2019-03-01 Epub Date: 2018-11-15 DOI:10.1007/s13246-018-0711-2
Mubasher Ali, Junaid Zafar, Haroon Zafar, Martin O'Halloran, Faisal Sharif
{"title":"Multiband ultra-thin flexible on-body transceivers for wearable health informatics.","authors":"Mubasher Ali,&nbsp;Junaid Zafar,&nbsp;Haroon Zafar,&nbsp;Martin O'Halloran,&nbsp;Faisal Sharif","doi":"10.1007/s13246-018-0711-2","DOIUrl":null,"url":null,"abstract":"<p><p>Substantial concentration has been associated to the monitoring of vital signs and human activity using wireless body area networks. However, one of the key technical challenges is to characterize an optimized transceiver geometry for desired isolation/bandwidth and specific absorption rate (SAR) characteristics, independent of transceiver chip on-body location. A microwave performance evaluation of monopole wearable transceiver was completed and results presented. A novel on-body antenna transceiver was designed, simulated and fabricated using an ultra-thin substrate RO 3010 (h = 250 µm) that ensures compactness and enhanced flexibility. The designed transceiver was evolved using very high value of dielectric constant using CST® Studio Suit and FEKO® numerical platforms. The on-body characterization for both fatty and bone tissues was experimentally verified for a bandwidth of 200 MHz. The fabricated configuration and real-time testing provides very promising microwave radiation parameters with a gain of 2.69 dBi, S<sub>11</sub> < - 13 dB at an operational frequency of 2.46 GHz. Multi-banding was achieved by introducing fractals in the design of the printed monopole. SAR calculations for feet, head and arm at microwave power levels ranging from 100 to 800 mW are incorporated. Furthermore, the real time data acquisition using developed transceiver and its experimental verification is illustrated.</p>","PeriodicalId":55430,"journal":{"name":"Australasian Physical & Engineering Sciences in Medicine","volume":"42 1","pages":"53-63"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13246-018-0711-2","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Physical & Engineering Sciences in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13246-018-0711-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/11/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 3

Abstract

Substantial concentration has been associated to the monitoring of vital signs and human activity using wireless body area networks. However, one of the key technical challenges is to characterize an optimized transceiver geometry for desired isolation/bandwidth and specific absorption rate (SAR) characteristics, independent of transceiver chip on-body location. A microwave performance evaluation of monopole wearable transceiver was completed and results presented. A novel on-body antenna transceiver was designed, simulated and fabricated using an ultra-thin substrate RO 3010 (h = 250 µm) that ensures compactness and enhanced flexibility. The designed transceiver was evolved using very high value of dielectric constant using CST® Studio Suit and FEKO® numerical platforms. The on-body characterization for both fatty and bone tissues was experimentally verified for a bandwidth of 200 MHz. The fabricated configuration and real-time testing provides very promising microwave radiation parameters with a gain of 2.69 dBi, S11 < - 13 dB at an operational frequency of 2.46 GHz. Multi-banding was achieved by introducing fractals in the design of the printed monopole. SAR calculations for feet, head and arm at microwave power levels ranging from 100 to 800 mW are incorporated. Furthermore, the real time data acquisition using developed transceiver and its experimental verification is illustrated.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于可穿戴健康信息的多波段超薄柔性身体收发器。
大量的浓度与使用无线身体区域网络监测生命体征和人类活动有关。然而,关键的技术挑战之一是表征优化的收发器几何形状,以获得所需的隔离/带宽和特定吸收率(SAR)特性,而不依赖于收发器芯片在体内的位置。完成了单极可穿戴收发器的微波性能评估,并给出了评估结果。采用超薄基板RO 3010 (h = 250µm)设计、模拟和制造了一种新型的体上天线收发器,以确保其紧凑性和增强的灵活性。所设计的收发器采用CST®Studio Suit和FEKO®数值平台,使用非常高的介电常数值。在200 MHz的带宽下,对脂肪和骨组织的体上特性进行了实验验证。制备的结构和实时测试提供了非常有前途的微波辐射参数,增益为2.69 dBi, S11
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Australasian Physical & Engineering Sciences in Medicine (APESM) is a multidisciplinary forum for information and research on the application of physics and engineering to medicine and human physiology. APESM covers a broad range of topics that include but is not limited to: - Medical physics in radiotherapy - Medical physics in diagnostic radiology - Medical physics in nuclear medicine - Mathematical modelling applied to medicine and human biology - Clinical biomedical engineering - Feature extraction, classification of EEG, ECG, EMG, EOG, and other biomedical signals; - Medical imaging - contributions to new and improved methods; - Modelling of physiological systems - Image processing to extract information from images, e.g. fMRI, CT, etc.; - Biomechanics, especially with applications to orthopaedics. - Nanotechnology in medicine APESM offers original reviews, scientific papers, scientific notes, technical papers, educational notes, book reviews and letters to the editor. APESM is the journal of the Australasian College of Physical Scientists and Engineers in Medicine, and also the official journal of the College of Biomedical Engineers, Engineers Australia and the Asia-Oceania Federation of Organizations for Medical Physics.
期刊最新文献
Acknowledgment of Reviewers for Volume 35 Acknowledgment of Reviewers for Volume 34 A comparison between EPSON V700 and EPSON V800 scanners for film dosimetry. Nanodosimetric understanding to the dependence of the relationship between dose-averaged lineal energy on nanoscale and LET on ion species. EPSM 2019, Engineering and Physical Sciences in Medicine : 28-30 October 2019, Perth, Australia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1