In Silico Profiling of Clinical Phenotypes for Human Targets Using Adverse Event Data.

Q2 Biochemistry, Genetics and Molecular Biology High-Throughput Pub Date : 2018-11-23 DOI:10.3390/ht7040037
Theodoros G Soldatos, Guillaume Taglang, David B Jackson
{"title":"<i>In Silico</i> Profiling of Clinical Phenotypes for Human Targets Using Adverse Event Data.","authors":"Theodoros G Soldatos,&nbsp;Guillaume Taglang,&nbsp;David B Jackson","doi":"10.3390/ht7040037","DOIUrl":null,"url":null,"abstract":"<p><p>We present a novel approach for the molecular transformation and analysis of patient clinical phenotypes. Building on the fact that drugs perturb the function of targets/genes, we integrated data from 8.2 million clinical reports detailing drug-induced side effects with the molecular world of drug-target information. Using this dataset, we extracted 1.8 million associations of clinical phenotypes to 770 human drug-targets. This collection is perhaps the largest phenotypic profiling reference of human targets to-date, and unique in that it enables rapid development of testable molecular hypotheses directly from human-specific information. We also present validation results demonstrating analytical utilities of the approach, including drug safety prediction, and the design of novel combination therapies. Challenging the long-standing notion that molecular perturbation studies cannot be performed in humans, our data allows researchers to capitalize on the vast tomes of clinical information available throughout the healthcare system.</p>","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":"7 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ht7040037","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Throughput","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ht7040037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 16

Abstract

We present a novel approach for the molecular transformation and analysis of patient clinical phenotypes. Building on the fact that drugs perturb the function of targets/genes, we integrated data from 8.2 million clinical reports detailing drug-induced side effects with the molecular world of drug-target information. Using this dataset, we extracted 1.8 million associations of clinical phenotypes to 770 human drug-targets. This collection is perhaps the largest phenotypic profiling reference of human targets to-date, and unique in that it enables rapid development of testable molecular hypotheses directly from human-specific information. We also present validation results demonstrating analytical utilities of the approach, including drug safety prediction, and the design of novel combination therapies. Challenging the long-standing notion that molecular perturbation studies cannot be performed in humans, our data allows researchers to capitalize on the vast tomes of clinical information available throughout the healthcare system.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用不良事件数据对人类靶点临床表型进行计算机分析。
我们提出了一种新的分子转化和分析患者临床表型的方法。基于药物干扰靶标/基因功能这一事实,我们将820万份详细描述药物引起的副作用的临床报告数据与药物靶标信息的分子世界进行了整合。利用该数据集,我们提取了770个人类药物靶点的180万个临床表型关联。该集合可能是迄今为止最大的人类靶点表型分析参考,并且独特之处在于它可以直接从人类特异性信息中快速开发可测试的分子假设。我们还展示了验证结果,证明了该方法的分析效用,包括药物安全性预测和新型联合疗法的设计。我们的数据挑战了分子摄动研究不能在人类中进行的长期观念,使研究人员能够利用整个医疗保健系统中可用的大量临床信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
High-Throughput
High-Throughput Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
9 weeks
期刊介绍: High-Throughput (formerly Microarrays, ISSN 2076-3905) is a multidisciplinary peer-reviewed scientific journal that provides an advanced forum for the publication of studies reporting high-dimensional approaches and developments in Life Sciences, Chemistry and related fields. Our aim is to encourage scientists to publish their experimental and theoretical results based on high-throughput techniques as well as computational and statistical tools for data analysis and interpretation. The full experimental or methodological details must be provided so that the results can be reproduced. There is no restriction on the length of the papers. High-Throughput invites submissions covering several topics, including, but not limited to: -Microarrays -DNA Sequencing -RNA Sequencing -Protein Identification and Quantification -Cell-based Approaches -Omics Technologies -Imaging -Bioinformatics -Computational Biology/Chemistry -Statistics -Integrative Omics -Drug Discovery and Development -Microfluidics -Lab-on-a-chip -Data Mining -Databases -Multiplex Assays
期刊最新文献
Health Impact and Therapeutic Manipulation of the Gut Microbiome. Influence of the Ovine Genital Tract Microbiota on the Species Artificial Insemination Outcome. A Pilot Study in Commercial Sheep Farms. Dark Proteome Database: Studies on Disorder. Intra-Laboratory Evaluation of Luminescence Based High-Throughput Serum Bactericidal Assay (L-SBA) to Determine Bactericidal Activity of Human Sera against Shigella. Genetic Counseling and NGS Screening for Recessive LGMD2A Families.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1