Gayatri Goswami, Ujjal Kumar Nath, Jong-In Park, Mohammad Rashed Hossain, Manosh Kumar Biswas, Hoy-Taek Kim, Hye Ran Kim, Ill-Sup Nou
{"title":"Transcriptional regulation of anthocyanin biosynthesis in a high-anthocyanin resynthesized <i>Brassica napus</i> cultivar.","authors":"Gayatri Goswami, Ujjal Kumar Nath, Jong-In Park, Mohammad Rashed Hossain, Manosh Kumar Biswas, Hoy-Taek Kim, Hye Ran Kim, Ill-Sup Nou","doi":"10.1186/s40709-018-0090-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Anthocyanins are plant secondary metabolites with key roles in attracting insect pollinators and protecting against biotic and abiotic stresses. They have potential health-promoting effects as part of the human diet. Anthocyanin biosynthesis has been elucidated in many species, enabling the development of anthocyanin-enriched fruits, vegetables, and grains; however, few studies have investigated <i>Brassica napus</i> anthocyanin biosynthesis.</p><p><strong>Results: </strong>We developed a high-anthocyanin resynthesized <i>B. napus</i> line, Rs035, by crossing anthocyanin-rich <i>B. rapa</i> (A genome) and <i>B. oleracea</i> (C genome) lines, followed by chromosome doubling. We identified and characterized 73 and 58 anthocyanin biosynthesis genes in silico in the A and C genomes, respectively; these genes showed syntenic relationships with 41 genes in <i>Arabidopsis thaliana</i> and <i>B. napus</i>. Among the syntenic genes, twelve biosynthetic and six regulatory genes showed transgressively higher expression in Rs035, and eight structural genes and one regulatory gene showed additive expression. We identified three early-, four late-biosynthesis pathways, three transcriptional regulator genes, and one transporter as putative candidates enhancing anthocyanin accumulation in Rs035. Principal component analysis and Pearson's correlation coefficients corroborated the contribution of these genes to anthocyanin accumulation.</p><p><strong>Conclusions: </strong>Our study lays the foundation for producing high-anthocyanin <i>B. napus</i> cultivars. The resynthesized lines and the differentially expressed genes we have identified could be used to transfer the anthocyanin traits to other commercial rapeseed lines using molecular and conventional breeding.</p>","PeriodicalId":50251,"journal":{"name":"Journal of Biological Research-Thessaloniki","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2018-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40709-018-0090-6","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Research-Thessaloniki","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40709-018-0090-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 23
Abstract
Background: Anthocyanins are plant secondary metabolites with key roles in attracting insect pollinators and protecting against biotic and abiotic stresses. They have potential health-promoting effects as part of the human diet. Anthocyanin biosynthesis has been elucidated in many species, enabling the development of anthocyanin-enriched fruits, vegetables, and grains; however, few studies have investigated Brassica napus anthocyanin biosynthesis.
Results: We developed a high-anthocyanin resynthesized B. napus line, Rs035, by crossing anthocyanin-rich B. rapa (A genome) and B. oleracea (C genome) lines, followed by chromosome doubling. We identified and characterized 73 and 58 anthocyanin biosynthesis genes in silico in the A and C genomes, respectively; these genes showed syntenic relationships with 41 genes in Arabidopsis thaliana and B. napus. Among the syntenic genes, twelve biosynthetic and six regulatory genes showed transgressively higher expression in Rs035, and eight structural genes and one regulatory gene showed additive expression. We identified three early-, four late-biosynthesis pathways, three transcriptional regulator genes, and one transporter as putative candidates enhancing anthocyanin accumulation in Rs035. Principal component analysis and Pearson's correlation coefficients corroborated the contribution of these genes to anthocyanin accumulation.
Conclusions: Our study lays the foundation for producing high-anthocyanin B. napus cultivars. The resynthesized lines and the differentially expressed genes we have identified could be used to transfer the anthocyanin traits to other commercial rapeseed lines using molecular and conventional breeding.
期刊介绍:
Journal of Biological Research-Thessaloniki is a peer-reviewed, open access, international journal that publishes articles providing novel insights into the major fields of biology.
Topics covered in Journal of Biological Research-Thessaloniki include, but are not limited to: molecular biology, cytology, genetics, evolutionary biology, morphology, development and differentiation, taxonomy, bioinformatics, physiology, marine biology, behaviour, ecology and conservation.