Lucia Schoderboeck, Hollie E Wicky, Wickliffe C Abraham, Stephanie M Hughes
{"title":"Genetic Targeting and Chemogenetic Inhibition of Newborn Neurons.","authors":"Lucia Schoderboeck, Hollie E Wicky, Wickliffe C Abraham, Stephanie M Hughes","doi":"10.1089/hgtb.2018.182","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to develop a method to silence a very specific set of cells in a spatially and temporally refined manner. Here, an approach is presented that combines the use of a transgenic mouse line, expressing cre recombinase under a nestin promoter, with lentiviral delivery of a floxed, ivermectin (IVM)-gated chloride channel construct to the dentate gyrus. This approach was used to express an IVM-sensitive chloride channel in newly born granule cells in adult mouse brains, and its ability to silence neuronal activity was tested by analyzing the effect on immediate early gene expression <i>in vitro</i> in cre-transgenic primary neuronal cultures. IVM treatment of cells expressing the chloride channel prevented gabazine-induced expression of the immediate early gene product EGR1, while cells expressing a control inactive channel or no channel retained their EGR1 response. Thus, a genetic strategy is presented for targeting a specific neurogenic niche for transgene expression in the adult mouse brain, and proof of principle is shown that it can be used <i>in vitro</i> as a method for silencing neuronal activity.</p>","PeriodicalId":13126,"journal":{"name":"Human Gene Therapy Methods","volume":"29 6","pages":"259-268"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/hgtb.2018.182","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Gene Therapy Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/hgtb.2018.182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study was to develop a method to silence a very specific set of cells in a spatially and temporally refined manner. Here, an approach is presented that combines the use of a transgenic mouse line, expressing cre recombinase under a nestin promoter, with lentiviral delivery of a floxed, ivermectin (IVM)-gated chloride channel construct to the dentate gyrus. This approach was used to express an IVM-sensitive chloride channel in newly born granule cells in adult mouse brains, and its ability to silence neuronal activity was tested by analyzing the effect on immediate early gene expression in vitro in cre-transgenic primary neuronal cultures. IVM treatment of cells expressing the chloride channel prevented gabazine-induced expression of the immediate early gene product EGR1, while cells expressing a control inactive channel or no channel retained their EGR1 response. Thus, a genetic strategy is presented for targeting a specific neurogenic niche for transgene expression in the adult mouse brain, and proof of principle is shown that it can be used in vitro as a method for silencing neuronal activity.
期刊介绍:
Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases.
The Journal is divided into three parts. Human Gene Therapy, the flagship, is published 12 times per year. HGT Methods, a bimonthly journal, focuses on the applications of gene therapy to product testing and development. HGT Clinical Development, a quarterly journal, serves as a venue for publishing data relevant to the regulatory review and commercial development of cell and gene therapy products.