The Instructive Role of the Bone Marrow Niche in Aging and Leukemia.

IF 2.3 Q4 CELL & TISSUE ENGINEERING Current Stem Cell Reports Pub Date : 2018-01-01 Epub Date: 2018-10-12 DOI:10.1007/s40778-018-0143-7
Elisa Lazzari, Jason M Butler
{"title":"The Instructive Role of the Bone Marrow Niche in Aging and Leukemia.","authors":"Elisa Lazzari,&nbsp;Jason M Butler","doi":"10.1007/s40778-018-0143-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>In this review, we aim to discuss the role of the bone marrow microenvironment in supporting hematopoiesis, with particular focus on the contribution of the endothelial niche in dictating hematopoietic stem cell (HSC) fate.</p><p><strong>Recent findings: </strong>Evidence gathered in the past two decades revealed that specific cell types within the bone marrow niche influence the hematopoietic system. Endothelial cells have emerged as a key component of the HSC niche, directly affecting stem cell quiescence, self-renewal, and lineage differentiation. Physiological alterations of the bone marrow niche occurring in aging have been described to be sufficient to promote functional aging of young HSCs. Furthermore, a growing body of evidence suggests that aberrant activation of endothelial-derived signaling pathways can aid or trigger neoplastic transformation.</p><p><strong>Summary: </strong>Several groups have contributed to the characterization of the different cell types that comprise the complex bone marrow environment, whose function was long perceived as an undiscernible sum of many parts. Further studies will need to uncover niche cell-type-specific pathways, in order to provide new targets and therapeutic options that aim at withdrawing the microenvironmental support to malignant cells while sparing normal HSCs.</p>","PeriodicalId":37444,"journal":{"name":"Current Stem Cell Reports","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40778-018-0143-7","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Stem Cell Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40778-018-0143-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/10/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 15

Abstract

Purpose of review: In this review, we aim to discuss the role of the bone marrow microenvironment in supporting hematopoiesis, with particular focus on the contribution of the endothelial niche in dictating hematopoietic stem cell (HSC) fate.

Recent findings: Evidence gathered in the past two decades revealed that specific cell types within the bone marrow niche influence the hematopoietic system. Endothelial cells have emerged as a key component of the HSC niche, directly affecting stem cell quiescence, self-renewal, and lineage differentiation. Physiological alterations of the bone marrow niche occurring in aging have been described to be sufficient to promote functional aging of young HSCs. Furthermore, a growing body of evidence suggests that aberrant activation of endothelial-derived signaling pathways can aid or trigger neoplastic transformation.

Summary: Several groups have contributed to the characterization of the different cell types that comprise the complex bone marrow environment, whose function was long perceived as an undiscernible sum of many parts. Further studies will need to uncover niche cell-type-specific pathways, in order to provide new targets and therapeutic options that aim at withdrawing the microenvironmental support to malignant cells while sparing normal HSCs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
骨髓生态位在衰老和白血病中的指导作用。
综述目的:在这篇综述中,我们旨在讨论骨髓微环境在支持造血中的作用,特别关注内皮生态位在决定造血干细胞(HSC)命运中的贡献。最近的发现:在过去的二十年中收集的证据表明,骨髓生态位内的特定细胞类型影响造血系统。内皮细胞已成为造血干细胞生态位的关键组成部分,直接影响干细胞的静止、自我更新和谱系分化。在衰老过程中发生的骨髓生态位的生理改变已经被描述为足以促进年轻造血干细胞的功能衰老。此外,越来越多的证据表明,内皮源性信号通路的异常激活可以帮助或触发肿瘤转化。总结:几个研究小组对组成复杂骨髓环境的不同细胞类型的特征做出了贡献,长期以来,骨髓环境的功能被认为是许多部分的不可分辨的总和。进一步的研究将需要揭示特定于小生境细胞类型的途径,以便提供新的靶点和治疗选择,旨在撤回对恶性细胞的微环境支持,同时保留正常的造血干细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Stem Cell Reports
Current Stem Cell Reports Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.30
自引率
0.00%
发文量
19
期刊介绍: The goal of this journal is to publish cutting-edge reviews on subjects pertinent to all aspects of stem cell research, therapy, ethics, commercialization, and policy. We aim to provide incisive, insightful, and balanced contributions from leading experts in each relevant domain that will be of immediate interest to a wide readership of clinicians, basic scientists, and translational investigators. We accomplish this aim by appointing major authorities to serve as Section Editors in key subject areas across the discipline. Section Editors select topics to be reviewed by leading experts who emphasize recent developments and highlight important papers published over the past year on their topics, in a crisp and readable format. We also provide commentaries from well-known figures in the field, and an Editorial Board of internationally diverse members suggests topics of special interest to their country/region and ensures that topics are current and include emerging research.
期刊最新文献
Stem Cell Therapy as a Potential Treatment of Non-Alcoholic Steatohepatitis-Related End-Stage Liver Disease: A Narrative Review Mesenchymal Stromal Cell Immunomodulatory Potential for Orthopedic Applications can be fine-tuned via 3D nano-engineered Scaffolds Maternal Gene Delivery for the Prevention and Treatment of Obstetric Conditions Prenatal Therapy for Congenital Diaphragmatic Hernia and Myelomeningocele: Advances in Particle-Based Delivery RNA-Mediated Regulation of Glycolysis in Embryonic Stem Cell Pluripotency and Differentiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1