Cellular Metabolism at a Glance.

Inês Mesquita, Fernando Rodrigues
{"title":"Cellular Metabolism at a Glance.","authors":"Inês Mesquita,&nbsp;Fernando Rodrigues","doi":"10.1007/978-3-319-74932-7_1","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolism is highly coordinated component of the cellular activity that involves sequential chemical transformations, within a so-called metabolic network. Through these coordinated actions, living organisms acquire energy and biosynthetic precursors to maintain cellular homeostasis and function. Metabolism relies on the breaking down of macromolecules to produce energy [catabolism] and/or intermediary metabolites that are then used to construct essential building blocks for macromolecule production [anabolism]. Overall, these metabolic processes are controlled by cellular energy status: when the energy released from catabolic processes exceeds the cellular demands the storage of metabolites in the form of lipids and glycogen takes place. These phenomena have been vastly associated with the genesis of metabolic disorders, such as obesity. In recent years, we have assisted to a rediscovery of metabolism through the identification of metabolic intermediaries that act as key players on differentiation, proliferation, and function of immune cells. This recent acknowledgement of the impact of metabolism in the overall immune response originated the ground-breaking field of immunometabolism. Here, we will provide a holistic view of metabolism highlighting the biochemical principles underlying its regulation.</p>","PeriodicalId":36906,"journal":{"name":"Experientia supplementum (2012)","volume":"109 ","pages":"3-27"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-74932-7_1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experientia supplementum (2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-74932-7_1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolism is highly coordinated component of the cellular activity that involves sequential chemical transformations, within a so-called metabolic network. Through these coordinated actions, living organisms acquire energy and biosynthetic precursors to maintain cellular homeostasis and function. Metabolism relies on the breaking down of macromolecules to produce energy [catabolism] and/or intermediary metabolites that are then used to construct essential building blocks for macromolecule production [anabolism]. Overall, these metabolic processes are controlled by cellular energy status: when the energy released from catabolic processes exceeds the cellular demands the storage of metabolites in the form of lipids and glycogen takes place. These phenomena have been vastly associated with the genesis of metabolic disorders, such as obesity. In recent years, we have assisted to a rediscovery of metabolism through the identification of metabolic intermediaries that act as key players on differentiation, proliferation, and function of immune cells. This recent acknowledgement of the impact of metabolism in the overall immune response originated the ground-breaking field of immunometabolism. Here, we will provide a holistic view of metabolism highlighting the biochemical principles underlying its regulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞代谢一览。
代谢是细胞活动中高度协调的组成部分,在所谓的代谢网络中涉及连续的化学转化。通过这些协调的作用,生物体获得能量和生物合成前体来维持细胞的稳态和功能。代谢依赖于大分子的分解来产生能量(分解代谢)和/或中间代谢物,然后这些代谢物被用来构建大分子产生的基本构件(合成代谢)。总的来说,这些代谢过程受细胞能量状态控制:当分解代谢过程释放的能量超过细胞需求时,代谢物就会以脂质和糖原的形式储存起来。这些现象与代谢紊乱(如肥胖)的起源密切相关。近年来,我们通过鉴定在免疫细胞分化、增殖和功能中起关键作用的代谢介质,帮助人们重新发现了代谢。最近对代谢在整体免疫反应中的影响的认识,开创了免疫代谢的突破性领域。在这里,我们将提供新陈代谢的整体观点,强调其调节的生化原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experientia supplementum (2012)
Experientia supplementum (2012) Medicine-Medicine (all)
CiteScore
3.30
自引率
0.00%
发文量
24
期刊最新文献
Mechanics of Microsporidian Polar Tube Firing. The Function and Structure of the Microsporidia Polar Tube. Insights from C. elegans into Microsporidia Biology and Host-Pathogen Relationships. Monoclonal Antibodies to CTLA-4 with Focus on Ipilimumab. Tumor-Infiltrating Lymphocytes and Their Role in Solid Tumor Progression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1