Mariamena Arbitrio, Maria Teresa Di Martino, Francesca Scionti, Vito Barbieri, Licia Pensabene, Pierosandro Tagliaferri
{"title":"Pharmacogenomic Profiling of ADME Gene Variants: Current Challenges and Validation Perspectives.","authors":"Mariamena Arbitrio, Maria Teresa Di Martino, Francesca Scionti, Vito Barbieri, Licia Pensabene, Pierosandro Tagliaferri","doi":"10.3390/ht7040040","DOIUrl":null,"url":null,"abstract":"<p><p>In the past decades, many efforts have been made to individualize medical treatments, taking into account molecular profiles and the individual genetic background. The development of molecularly targeted drugs and immunotherapy have revolutionized medical treatments but the inter-patient variability in the anti-tumor drug pharmacokinetics (PK) and pharmacodynamics can be explained, at least in part, by genetic variations in genes encoding drug metabolizing enzymes and transporters (ADME) or in genes encoding drug receptors. Here, we focus on high-throughput technologies applied for PK screening for the identification of predictive biomarkers of efficacy or toxicity in cancer treatment, whose application in clinical practice could promote personalized treatments tailored on individual's genetic make-up. Pharmacogenomic tools have been implemented and the clinical utility of pharmacogenetic screening could increase safety in patients for the identification of drug metabolism-related biomarkers for a personalized medicine. Although pharmacogenomic studies were performed in adult cohorts, pharmacogenetic pediatric research has yielded promising results. Additionally, we discuss the current challenges and theoretical bases for the implementation of pharmacogenetic tests for translation in the clinical practice taking into account that pharmacogenomics platforms are discovery oriented and must open the way for the setting of robust tests suitable for daily practice.</p>","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":"7 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ht7040040","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Throughput","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ht7040040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 27
Abstract
In the past decades, many efforts have been made to individualize medical treatments, taking into account molecular profiles and the individual genetic background. The development of molecularly targeted drugs and immunotherapy have revolutionized medical treatments but the inter-patient variability in the anti-tumor drug pharmacokinetics (PK) and pharmacodynamics can be explained, at least in part, by genetic variations in genes encoding drug metabolizing enzymes and transporters (ADME) or in genes encoding drug receptors. Here, we focus on high-throughput technologies applied for PK screening for the identification of predictive biomarkers of efficacy or toxicity in cancer treatment, whose application in clinical practice could promote personalized treatments tailored on individual's genetic make-up. Pharmacogenomic tools have been implemented and the clinical utility of pharmacogenetic screening could increase safety in patients for the identification of drug metabolism-related biomarkers for a personalized medicine. Although pharmacogenomic studies were performed in adult cohorts, pharmacogenetic pediatric research has yielded promising results. Additionally, we discuss the current challenges and theoretical bases for the implementation of pharmacogenetic tests for translation in the clinical practice taking into account that pharmacogenomics platforms are discovery oriented and must open the way for the setting of robust tests suitable for daily practice.
High-ThroughputBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
9 weeks
期刊介绍:
High-Throughput (formerly Microarrays, ISSN 2076-3905) is a multidisciplinary peer-reviewed scientific journal that provides an advanced forum for the publication of studies reporting high-dimensional approaches and developments in Life Sciences, Chemistry and related fields. Our aim is to encourage scientists to publish their experimental and theoretical results based on high-throughput techniques as well as computational and statistical tools for data analysis and interpretation. The full experimental or methodological details must be provided so that the results can be reproduced. There is no restriction on the length of the papers. High-Throughput invites submissions covering several topics, including, but not limited to: -Microarrays -DNA Sequencing -RNA Sequencing -Protein Identification and Quantification -Cell-based Approaches -Omics Technologies -Imaging -Bioinformatics -Computational Biology/Chemistry -Statistics -Integrative Omics -Drug Discovery and Development -Microfluidics -Lab-on-a-chip -Data Mining -Databases -Multiplex Assays