{"title":"A Possible Prebiotic Ancestry of Porphyrin-Type Protein Cofactors.","authors":"Hannes Lukas Pleyer, Henry Strasdeit, Stefan Fox","doi":"10.1007/s11084-018-9567-4","DOIUrl":null,"url":null,"abstract":"<p><p>In previous experiments that simulated conditions on primordial volcanic islands, we demonstrated the abiotic formation of hydrophobic porphyrins. The present study focused on the question whether such porphyrins can be metalated by prebiotically plausible metal ion sources. We used water-insoluble octaethylporphyrin (H<sub>2</sub>oep) as a model compound. Experiments were conducted in a nitrogen atmosphere under cyclic wet-dry conditions in order to simulate the fluctuating environment in prebiotic rock pools. Wetting-drying proved to be a crucial factor. Significant yields of the metalloporphyrins (20-78% with respect to H<sub>2</sub>oep) were obtained from the soluble salts MCl<sub>2</sub> (M = Mg, Fe, Co, Ni and Cu) in freshwater. Even almost insoluble minerals and rocks metalated the porphyrin. Basalt (an iron source, 11% yield), synthetic jaipurite (CoS, 33%) and synthetic covellite (CuS, 57%) were most efficient. Basalt, magnetite and FeCl<sub>2</sub> gave considerably higher yields in artificial seawater than in freshwater. From iron sources, the highest yields, however, were obtained in an acidic medium (hydrochloric acid with an initial pH of 2.1). Under these conditions, iron meteorites also metalated the porphyrin. Acidic conditions were considered because they are known to occur during eruptions on volcanic islands. Octaethylporphyrinatomagnesium(II) did not form in acidic medium and was unstable towards dissolved Fe<sup>2+</sup>. It is therefore questionable whether magnesium porphyrins, i.e. possible ancestors of chlorophyll, could have accumulated in primordial rock pools. However, abiotically formed ancestors of the modern cofactors heme (Fe), B<sub>12</sub> (Co), and F<sub>430</sub> (Ni) may have been available to hypothetical protometabolisms and early organisms.</p>","PeriodicalId":19614,"journal":{"name":"Origins of Life and Evolution of Biospheres","volume":"48 4","pages":"347-371"},"PeriodicalIF":1.9000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11084-018-9567-4","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Origins of Life and Evolution of Biospheres","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11084-018-9567-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/12/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 16
Abstract
In previous experiments that simulated conditions on primordial volcanic islands, we demonstrated the abiotic formation of hydrophobic porphyrins. The present study focused on the question whether such porphyrins can be metalated by prebiotically plausible metal ion sources. We used water-insoluble octaethylporphyrin (H2oep) as a model compound. Experiments were conducted in a nitrogen atmosphere under cyclic wet-dry conditions in order to simulate the fluctuating environment in prebiotic rock pools. Wetting-drying proved to be a crucial factor. Significant yields of the metalloporphyrins (20-78% with respect to H2oep) were obtained from the soluble salts MCl2 (M = Mg, Fe, Co, Ni and Cu) in freshwater. Even almost insoluble minerals and rocks metalated the porphyrin. Basalt (an iron source, 11% yield), synthetic jaipurite (CoS, 33%) and synthetic covellite (CuS, 57%) were most efficient. Basalt, magnetite and FeCl2 gave considerably higher yields in artificial seawater than in freshwater. From iron sources, the highest yields, however, were obtained in an acidic medium (hydrochloric acid with an initial pH of 2.1). Under these conditions, iron meteorites also metalated the porphyrin. Acidic conditions were considered because they are known to occur during eruptions on volcanic islands. Octaethylporphyrinatomagnesium(II) did not form in acidic medium and was unstable towards dissolved Fe2+. It is therefore questionable whether magnesium porphyrins, i.e. possible ancestors of chlorophyll, could have accumulated in primordial rock pools. However, abiotically formed ancestors of the modern cofactors heme (Fe), B12 (Co), and F430 (Ni) may have been available to hypothetical protometabolisms and early organisms.
期刊介绍:
The subject of the origin and early evolution of life is an inseparable part of the general discipline of Astrobiology. The journal Origins of Life and Evolution of Biospheres places special importance on the interconnection as well as the interdisciplinary nature of these fields, as is reflected in its subject coverage. While any scientific study which contributes to our understanding of the origins, evolution and distribution of life in the Universe is suitable for inclusion in the journal, some examples of important areas of interest are: prebiotic chemistry and the nature of Earth''s early environment, self-replicating and self-organizing systems, the theory of the RNA world and of other possible precursor systems, and the problem of the origin of the genetic code. Early evolution of life - as revealed by such techniques as the elucidation of biochemical pathways, molecular phylogeny, the study of Precambrian sediments and fossils and of major innovations in microbial evolution - forms a second focus. As a larger and more general context for these areas, Astrobiology refers to the origin and evolution of life in a cosmic setting, and includes interstellar chemistry, planetary atmospheres and habitable zones, the organic chemistry of comets, meteorites, asteroids and other small bodies, biological adaptation to extreme environments, life detection and related areas. Experimental papers, theoretical articles and authorative literature reviews are all appropriate forms for submission to the journal. In the coming years, Astrobiology will play an even greater role in defining the journal''s coverage and keeping Origins of Life and Evolution of Biospheres well-placed in this growing interdisciplinary field.