Songhwa Choi, Hyeonyoung Ko, Kayoung Lee, Joohon Sung, Yun-Mi Song
{"title":"Genetic influence on serum 25-hydroxyvitamin D concentration in Korean men: a cross-sectional study.","authors":"Songhwa Choi, Hyeonyoung Ko, Kayoung Lee, Joohon Sung, Yun-Mi Song","doi":"10.1186/s12263-018-0621-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hypovitaminosis D is prevalent worldwide. It is more prevalent in Eastern Asia region, including Korea. In addition to various environmental factors that influence serum 25-hydroxyvitamin D (25(OH)D) concentration, genetic influence also plays a significant role based on studies estimating the heritability of 25(OH)D in non-Asian populations. The objective of this study was to determine the genetic influence on serum 25(OH)D concentration in Korean men using the twin and family data.</p><p><strong>Methods: </strong>A total of 1126 Korean male adult twins and family members from the Healthy Twin Study with serum 25(OH)D measurement were included in this cross-sectional study. Intraclass correlation coefficients (ICCs) and heritability were calculated by mixed linear regression analysis and quantitative genetic analysis after adjusting for environmental and lifestyle factors.</p><p><strong>Results: </strong>Mean (± standard deviation; SD) of serum 25(OH)D concentration was 15.34 ± 6.18 ng/ml. The prevalence of vitamin D insufficiency was 19.8% and that of vitamin D deficiency was 77.9%. After adjusting for age, the highest ICC (0.61) was observed for monozygotic twin pairs while the lowest ICC (0.31) was found for father-son pairs. Age-adjusted heritability was estimated to be 58%. When physical activity, multivitamin intake and season of blood sampling were further considered, the ICC and heritability did not materially change. In the sensitivity analysis after excluding known multivitamin users, age-adjusted heritability was reduced to 44%.</p><p><strong>Conclusions: </strong>In our study of Korean male twins and family members, heritability of 25(OH)D was moderately high. This supports the finding that genetic factors have significant influence on vitamin D status.</p>","PeriodicalId":12554,"journal":{"name":"Genes & Nutrition","volume":" ","pages":"33"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12263-018-0621-7","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & Nutrition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12263-018-0621-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Background: Hypovitaminosis D is prevalent worldwide. It is more prevalent in Eastern Asia region, including Korea. In addition to various environmental factors that influence serum 25-hydroxyvitamin D (25(OH)D) concentration, genetic influence also plays a significant role based on studies estimating the heritability of 25(OH)D in non-Asian populations. The objective of this study was to determine the genetic influence on serum 25(OH)D concentration in Korean men using the twin and family data.
Methods: A total of 1126 Korean male adult twins and family members from the Healthy Twin Study with serum 25(OH)D measurement were included in this cross-sectional study. Intraclass correlation coefficients (ICCs) and heritability were calculated by mixed linear regression analysis and quantitative genetic analysis after adjusting for environmental and lifestyle factors.
Results: Mean (± standard deviation; SD) of serum 25(OH)D concentration was 15.34 ± 6.18 ng/ml. The prevalence of vitamin D insufficiency was 19.8% and that of vitamin D deficiency was 77.9%. After adjusting for age, the highest ICC (0.61) was observed for monozygotic twin pairs while the lowest ICC (0.31) was found for father-son pairs. Age-adjusted heritability was estimated to be 58%. When physical activity, multivitamin intake and season of blood sampling were further considered, the ICC and heritability did not materially change. In the sensitivity analysis after excluding known multivitamin users, age-adjusted heritability was reduced to 44%.
Conclusions: In our study of Korean male twins and family members, heritability of 25(OH)D was moderately high. This supports the finding that genetic factors have significant influence on vitamin D status.