Optical flow based waveform for the assessment of the vocal fold vibrations.

Q3 Biochemistry, Genetics and Molecular Biology Australasian Physical & Engineering Sciences in Medicine Pub Date : 2019-03-01 Epub Date: 2018-12-19 DOI:10.1007/s13246-018-0717-9
Heyfa Ammar
{"title":"Optical flow based waveform for the assessment of the vocal fold vibrations.","authors":"Heyfa Ammar","doi":"10.1007/s13246-018-0717-9","DOIUrl":null,"url":null,"abstract":"<p><p>Assessing vocal fold (VF) vibrations is important for the diagnosis of several diseases, and is made possible through the analysis of videoendoscopy recordings. However, the visual analysis of these recordings is hard due to the high acquisition rate. For this reason, it is commonly used to extract the laryngeal activity information from the recordings and represent it in a way suitable to be visually analyzed. Waveforms, images and playbacks are examples of representations reported in the literature. The main limitation of some of them is the lack of precisely locating the pathology within the VFs. Whereas others require the segmentation of the glottis in all the images of the video which is a complex and hard task given the high amount of images in the video and the necessity for the user intervention. To overcome these problems, the present study proposes a new waveform that maps the local vibrations of the VFs without the need for segmenting all the images of the video. Instead, the segmentation is restricted to only one image per vibratory cycle. Then, a new optical flow based technique is proposed to deduce the cycle-to-cycle dynamics of the VFs. The ability of the proposed approach to provide a reliable visual assessment is experimentally evaluated using different types of phonation and different vocal pathologies.</p>","PeriodicalId":55430,"journal":{"name":"Australasian Physical & Engineering Sciences in Medicine","volume":"42 1","pages":"91-109"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13246-018-0717-9","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Physical & Engineering Sciences in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13246-018-0717-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/12/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 2

Abstract

Assessing vocal fold (VF) vibrations is important for the diagnosis of several diseases, and is made possible through the analysis of videoendoscopy recordings. However, the visual analysis of these recordings is hard due to the high acquisition rate. For this reason, it is commonly used to extract the laryngeal activity information from the recordings and represent it in a way suitable to be visually analyzed. Waveforms, images and playbacks are examples of representations reported in the literature. The main limitation of some of them is the lack of precisely locating the pathology within the VFs. Whereas others require the segmentation of the glottis in all the images of the video which is a complex and hard task given the high amount of images in the video and the necessity for the user intervention. To overcome these problems, the present study proposes a new waveform that maps the local vibrations of the VFs without the need for segmenting all the images of the video. Instead, the segmentation is restricted to only one image per vibratory cycle. Then, a new optical flow based technique is proposed to deduce the cycle-to-cycle dynamics of the VFs. The ability of the proposed approach to provide a reliable visual assessment is experimentally evaluated using different types of phonation and different vocal pathologies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于光流的声带振动评估波形。
评估声带(VF)振动对几种疾病的诊断很重要,并且可以通过内窥镜录像的分析来实现。但是,由于采集率高,很难对这些录音进行可视化分析。因此,通常用于从录音中提取喉活动信息,并以适合于视觉分析的方式表示。波形、图像和回放是文献中报道的表征的例子。其中一些的主要限制是缺乏精确定位VFs内的病理。而另一些方法则需要在视频的所有图像中对声门进行分割,这是一项复杂而艰巨的任务,因为视频中的图像数量很多,而且需要用户的干预。为了克服这些问题,本研究提出了一种新的波形,该波形可以映射VFs的局部振动,而无需分割视频的所有图像。相反,分割被限制为每个振动周期只有一个图像。然后,提出了一种新的基于光流的技术来推导VFs的周期动力学。所提出的方法提供可靠的视觉评估的能力是使用不同类型的发声和不同的声乐病理进行实验评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Australasian Physical & Engineering Sciences in Medicine (APESM) is a multidisciplinary forum for information and research on the application of physics and engineering to medicine and human physiology. APESM covers a broad range of topics that include but is not limited to: - Medical physics in radiotherapy - Medical physics in diagnostic radiology - Medical physics in nuclear medicine - Mathematical modelling applied to medicine and human biology - Clinical biomedical engineering - Feature extraction, classification of EEG, ECG, EMG, EOG, and other biomedical signals; - Medical imaging - contributions to new and improved methods; - Modelling of physiological systems - Image processing to extract information from images, e.g. fMRI, CT, etc.; - Biomechanics, especially with applications to orthopaedics. - Nanotechnology in medicine APESM offers original reviews, scientific papers, scientific notes, technical papers, educational notes, book reviews and letters to the editor. APESM is the journal of the Australasian College of Physical Scientists and Engineers in Medicine, and also the official journal of the College of Biomedical Engineers, Engineers Australia and the Asia-Oceania Federation of Organizations for Medical Physics.
期刊最新文献
Acknowledgment of Reviewers for Volume 35 Acknowledgment of Reviewers for Volume 34 A comparison between EPSON V700 and EPSON V800 scanners for film dosimetry. Nanodosimetric understanding to the dependence of the relationship between dose-averaged lineal energy on nanoscale and LET on ion species. EPSM 2019, Engineering and Physical Sciences in Medicine : 28-30 October 2019, Perth, Australia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1