Research advances in erythrocyte regeneration sources and methods in vitro

IF 4 Q2 CELL & TISSUE ENGINEERING Cell Regeneration Pub Date : 2018-12-01 DOI:10.1016/j.cr.2018.10.001
Shuming Sun , Yuanliang Peng , Jing Liu
{"title":"Research advances in erythrocyte regeneration sources and methods in vitro","authors":"Shuming Sun ,&nbsp;Yuanliang Peng ,&nbsp;Jing Liu","doi":"10.1016/j.cr.2018.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Erythrocytes (red blood cells, RBCs) facilitate gas exchange in the lungs and transport oxygen to the tissues. The human body must maintain erythrocyte regeneration to support metabolically active cells and tissues. In many hematological diseases, erythrocyte regeneration is impaired. Researchers have studied erythrocyte regeneration for many years both <em>in vivo</em> and <em>in vitro</em>. In this review, we summarize the sources and main culture methods for generating mature and functional red blood cells <em>in vitro</em>. Hematopoietic stem cells (HSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are classic sources for erythrocyte regeneration. In addition, alternative sources such as immortalized adult human erythroid cell lines and transformed fibroblasts have also been generated and have produced functional red blood cells. The culture systems for erythrocytes differ among laboratories. Researchers hope that improvements in culture techniques may contribute to improved RBC outcomes for blood transfusions, drug delivery and the treatment of hematological diseases.</p></div>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"7 2","pages":"Pages 45-49"},"PeriodicalIF":4.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cr.2018.10.001","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Regeneration","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2045976918300117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 13

Abstract

Erythrocytes (red blood cells, RBCs) facilitate gas exchange in the lungs and transport oxygen to the tissues. The human body must maintain erythrocyte regeneration to support metabolically active cells and tissues. In many hematological diseases, erythrocyte regeneration is impaired. Researchers have studied erythrocyte regeneration for many years both in vivo and in vitro. In this review, we summarize the sources and main culture methods for generating mature and functional red blood cells in vitro. Hematopoietic stem cells (HSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are classic sources for erythrocyte regeneration. In addition, alternative sources such as immortalized adult human erythroid cell lines and transformed fibroblasts have also been generated and have produced functional red blood cells. The culture systems for erythrocytes differ among laboratories. Researchers hope that improvements in culture techniques may contribute to improved RBC outcomes for blood transfusions, drug delivery and the treatment of hematological diseases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
红细胞体外再生来源及方法的研究进展
红细胞(红细胞,红细胞)促进肺部气体交换并将氧气输送到组织。人体必须保持红细胞再生,以支持代谢活跃的细胞和组织。在许多血液病中,红细胞再生受损。研究人员多年来一直在体内和体外研究红细胞再生。本文综述了成熟功能性红细胞的来源和主要体外培养方法。造血干细胞(hsc)、胚胎干细胞(ESCs)和诱导多能干细胞(iPSCs)是红细胞再生的经典来源。此外,其他来源,如永生化成人红细胞系和转化成纤维细胞也已产生,并已产生功能性红细胞。不同实验室的红细胞培养系统不同。研究人员希望,培养技术的改进可能有助于改善输血、药物输送和血液疾病治疗中的红细胞结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Regeneration
Cell Regeneration Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.80
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍: Cell Regeneration aims to provide a worldwide platform for researches on stem cells and regenerative biology to develop basic science and to foster its clinical translation in medicine. Cell Regeneration welcomes reports on novel discoveries, theories, methods, technologies, and products in the field of stem cells and regenerative research, the journal is interested, but not limited to the following topics: ◎ Embryonic stem cells ◎ Induced pluripotent stem cells ◎ Tissue-specific stem cells ◎ Tissue or organ regeneration ◎ Methodology ◎ Biomaterials and regeneration ◎ Clinical translation or application in medicine
期刊最新文献
Salivary gland stem/progenitor cells: advancing from basic science to clinical applications. Saponins enhance the stability and cost-efficiency of human embryonic stem cell culture. Standard: Human gastric organoids. Neuroligin-3 R451C induces gain-of-function gene expression in astroglia in an astroglia-enriched brain organoid model. Standard: Human gastric cancer organoids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1