Vlasov methods in space physics and astrophysics.

Minna Palmroth, Urs Ganse, Yann Pfau-Kempf, Markus Battarbee, Lucile Turc, Thiago Brito, Maxime Grandin, Sanni Hoilijoki, Arto Sandroos, Sebastian von Alfthan
{"title":"Vlasov methods in space physics and astrophysics.","authors":"Minna Palmroth,&nbsp;Urs Ganse,&nbsp;Yann Pfau-Kempf,&nbsp;Markus Battarbee,&nbsp;Lucile Turc,&nbsp;Thiago Brito,&nbsp;Maxime Grandin,&nbsp;Sanni Hoilijoki,&nbsp;Arto Sandroos,&nbsp;Sebastian von Alfthan","doi":"10.1007/s41115-018-0003-2","DOIUrl":null,"url":null,"abstract":"<p><p>This paper reviews Vlasov-based numerical methods used to model plasma in space physics and astrophysics. Plasma consists of collectively behaving charged particles that form the major part of baryonic matter in the Universe. Many concepts ranging from our own planetary environment to the Solar system and beyond can be understood in terms of kinetic plasma physics, represented by the Vlasov equation. We introduce the physical basis for the Vlasov system, and then outline the associated numerical methods that are typically used. A particular application of the Vlasov system is Vlasiator, the world's first global hybrid-Vlasov simulation for the Earth's magnetic domain, the magnetosphere. We introduce the design strategies for Vlasiator and outline its numerical concepts ranging from solvers to coupling schemes. We review Vlasiator's parallelisation methods and introduce the used high-performance computing (HPC) techniques. A short review of verification, validation and physical results is included. The purpose of the paper is to present the Vlasov system and introduce an example implementation, and to illustrate that even with massive computational challenges, an accurate description of physics can be rewarding in itself and significantly advance our understanding. Upcoming supercomputing resources are making similar efforts feasible in other fields as well, making our design options relevant for others facing similar challenges.</p>","PeriodicalId":74085,"journal":{"name":"Living reviews in computational astrophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41115-018-0003-2","citationCount":"108","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Living reviews in computational astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41115-018-0003-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/8/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 108

Abstract

This paper reviews Vlasov-based numerical methods used to model plasma in space physics and astrophysics. Plasma consists of collectively behaving charged particles that form the major part of baryonic matter in the Universe. Many concepts ranging from our own planetary environment to the Solar system and beyond can be understood in terms of kinetic plasma physics, represented by the Vlasov equation. We introduce the physical basis for the Vlasov system, and then outline the associated numerical methods that are typically used. A particular application of the Vlasov system is Vlasiator, the world's first global hybrid-Vlasov simulation for the Earth's magnetic domain, the magnetosphere. We introduce the design strategies for Vlasiator and outline its numerical concepts ranging from solvers to coupling schemes. We review Vlasiator's parallelisation methods and introduce the used high-performance computing (HPC) techniques. A short review of verification, validation and physical results is included. The purpose of the paper is to present the Vlasov system and introduce an example implementation, and to illustrate that even with massive computational challenges, an accurate description of physics can be rewarding in itself and significantly advance our understanding. Upcoming supercomputing resources are making similar efforts feasible in other fields as well, making our design options relevant for others facing similar challenges.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间物理学和天体物理学中的弗拉索夫方法。
本文综述了空间物理和天体物理中基于vlasov的等离子体数值模拟方法。等离子体由集体行为的带电粒子组成,它们构成了宇宙中重子物质的主要部分。从我们自己的行星环境到太阳系以及更远的地方,许多概念都可以用动力学等离子体物理学来理解,用弗拉索夫方程来表示。我们介绍了Vlasov系统的物理基础,然后概述了通常使用的相关数值方法。Vlasov系统的一个特殊应用是Vlasiator,这是世界上第一个针对地球磁域(磁层)的全球混合Vlasov模拟。我们介绍了消光器的设计策略,并概述了它的数值概念,从求解器到耦合方案。我们回顾了Vlasiator的并行化方法,并介绍了使用的高性能计算(HPC)技术。包括对验证、确认和物理结果的简短回顾。本文的目的是介绍Vlasov系统,并介绍一个示例实现,并说明即使有大量的计算挑战,对物理的准确描述本身也是有益的,并显著推进我们的理解。即将到来的超级计算资源也使类似的努力在其他领域变得可行,使我们的设计选择与其他面临类似挑战的人相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Turbulence modelling in neutron star merger simulations Signatures of convection in the atmospheres of cool evolved stars Computational approaches to modeling dynamos in galaxies. Computational methods for collisional stellar systems Neutrino transport in general relativistic neutron star merger simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1