Multi-feature fusion method for medical image retrieval using wavelet and bag-of-features.

Pub Date : 2019-10-01 Epub Date: 2019-01-28 DOI:10.1080/24699322.2018.1560087
Liu Shuang, Chen Deyun, Chen Zhifeng, Pang Ming
{"title":"Multi-feature fusion method for medical image retrieval using wavelet and bag-of-features.","authors":"Liu Shuang,&nbsp;Chen Deyun,&nbsp;Chen Zhifeng,&nbsp;Pang Ming","doi":"10.1080/24699322.2018.1560087","DOIUrl":null,"url":null,"abstract":"<p><p>Color, texture, and shape are the common features used for the retrieval systems. However, many medical images have a spot of color information. Therefore, the discriminative texture and shape features should be extracted to obtain a satisfied retrieval result. In order to increase the credibility of the retrieval process, many features can be combined to be used for medical image retrieval. Meanwhile, more features require more processing time, which will decrease the retrieval speed. In this paper, wavelet decomposition is adopted to generate different resolution images. Bag-of-feature, texture, and LBP feature are extracted from three different-level wavelet images. Finally, the similarity measure function is obtained by fusing these three types of features. Experimental results show that the proposed multi-feature fusion method can achieve a higher retrieval accuracy with an acceptable retrieval time.</p>","PeriodicalId":72668,"journal":{"name":"","volume":"24 sup1","pages":"72-80"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24699322.2018.1560087","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/24699322.2018.1560087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Color, texture, and shape are the common features used for the retrieval systems. However, many medical images have a spot of color information. Therefore, the discriminative texture and shape features should be extracted to obtain a satisfied retrieval result. In order to increase the credibility of the retrieval process, many features can be combined to be used for medical image retrieval. Meanwhile, more features require more processing time, which will decrease the retrieval speed. In this paper, wavelet decomposition is adopted to generate different resolution images. Bag-of-feature, texture, and LBP feature are extracted from three different-level wavelet images. Finally, the similarity measure function is obtained by fusing these three types of features. Experimental results show that the proposed multi-feature fusion method can achieve a higher retrieval accuracy with an acceptable retrieval time.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波和特征袋的医学图像检索多特征融合方法。
颜色、纹理和形状是检索系统使用的共同特征。然而,许多医学图像有一个斑点的颜色信息。因此,为了获得满意的检索结果,需要提取具有区别性的纹理和形状特征。为了增加检索过程的可信度,可以将许多特征组合起来用于医学图像检索。同时,更多的特征需要更多的处理时间,这将降低检索速度。本文采用小波分解生成不同分辨率的图像。从三个不同层次的小波图像中提取特征袋、纹理和LBP特征。最后,将这三类特征融合得到相似度度量函数。实验结果表明,所提出的多特征融合方法可以在可接受的检索时间内获得较高的检索精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1