A novel technique for analysing histogram equalized medical images using superpixels.

Pub Date : 2019-10-01 Epub Date: 2019-01-28 DOI:10.1080/24699322.2018.1560100
Li Yao, Sohail Muhammad
{"title":"A novel technique for analysing histogram equalized medical images using superpixels.","authors":"Li Yao,&nbsp;Sohail Muhammad","doi":"10.1080/24699322.2018.1560100","DOIUrl":null,"url":null,"abstract":"<p><p>We present a novel technique to distinguish between an original image and its histogram equalized version. Histogram equalization and superpixel segmentation such as SLIC (simple linear iterative clustering) are very popular image processing tools. Based on these two concepts, we introduce a method for finding whether an image (grayscale) is histogram equalized or not. Because sometimes we see images that look visually similar but they are actually processed or changed by some image enhancement process such as histogram equalization. We can merely infer whether the image is dark, bright or has a small dynamic range. Moreover, we also compare the result of SLIC superpixels with three other superpixel segmentation algorithms namely, quick shift, watersheds, and Felzenszwalb's segmentation algorithm.</p>","PeriodicalId":72668,"journal":{"name":"","volume":"24 sup1","pages":"53-61"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24699322.2018.1560100","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/24699322.2018.1560100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We present a novel technique to distinguish between an original image and its histogram equalized version. Histogram equalization and superpixel segmentation such as SLIC (simple linear iterative clustering) are very popular image processing tools. Based on these two concepts, we introduce a method for finding whether an image (grayscale) is histogram equalized or not. Because sometimes we see images that look visually similar but they are actually processed or changed by some image enhancement process such as histogram equalization. We can merely infer whether the image is dark, bright or has a small dynamic range. Moreover, we also compare the result of SLIC superpixels with three other superpixel segmentation algorithms namely, quick shift, watersheds, and Felzenszwalb's segmentation algorithm.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种利用超像素均衡化医学图像的直方图分析新技术。
我们提出了一种新的技术来区分原始图像和其直方图均衡化版本。直方图均衡化和超像素分割如SLIC(简单线性迭代聚类)是非常流行的图像处理工具。基于这两个概念,我们引入了一种检测图像(灰度)是否为直方图均衡化的方法。因为有时我们看到的图像看起来很相似,但实际上它们被处理或改变了一些图像增强过程,比如直方图均衡化。我们只能推断图像是暗的、亮的还是动态范围小。此外,我们还将SLIC超像素的分割结果与其他三种超像素分割算法(quick shift、watershed和Felzenszwalb分割算法)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1