{"title":"TrkB expression and dependence divides gustatory neurons into three subpopulations.","authors":"Jennifer Rios-Pilier, Robin F Krimm","doi":"10.1186/s13064-019-0127-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>During development, gustatory (taste) neurons likely undergo numerous changes in morphology and expression prior to differentiation into maturity, but little is known this process or the factors that regulate it. Neuron differentiation is likely regulated by a combination of transcription and growth factors. Embryonically, most geniculate neuron development is regulated by the growth factor brain derived neurotrophic factor (BDNF). Postnatally, however, BDNF expression becomes restricted to subpopulations of taste receptor cells with specific functions. We hypothesized that during development, the receptor for BDNF, tropomyosin kinase B receptor (TrkB), may also become developmentally restricted to a subset of taste neurons and could be one factor that is differentially expressed across taste neuron subsets.</p><p><strong>Methods: </strong>We used transgenic mouse models to label both geniculate neurons innervating the oral cavity (Phox2b+), which are primarily taste, from those projecting to the outer ear (auricular neurons) to label TrkB expressing neurons (TrkB<sup>GFP</sup>). We also compared neuron number, taste bud number, and taste receptor cell types in wild-type animals and conditional TrkB knockouts.</p><p><strong>Results: </strong>Between E15.5-E17.5, TrkB receptor expression becomes restricted to half of the Phox2b + neurons. This TrkB downregulation was specific to oral cavity projecting neurons, since TrkB expression remained constant throughout development in the auricular geniculate neurons (Phox2b-). Conditional TrkB removal from oral sensory neurons (Phox2b+) reduced this population to 92% of control levels, indicating that only 8% of these neurons do not depend on TrkB for survival during development. The remaining neurons failed to innervate any remaining taste buds, 14% of which remained despite the complete loss of innervation. Finally, some types of taste receptor cells (Car4+) were more dependent on innervation than others (PLCβ2+).</p><p><strong>Conclusions: </strong>Together, these findings indicate that TrkB expression and dependence divides gustatory neurons into three subpopulations: 1) neurons that always express TrkB and are TrkB-dependent during development (50%), 2) neurons dependent on TrkB during development but that downregulate TrkB expression between E15.5 and E17.5 (41%), and 3) neurons that never express or depend on TrkB (9%). These TrkB-independent neurons are likely non-gustatory, as they do not innervate taste buds.</p>","PeriodicalId":49764,"journal":{"name":"Neural Development","volume":"14 1","pages":"3"},"PeriodicalIF":4.0000,"publicationDate":"2019-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13064-019-0127-z","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13064-019-0127-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 6
Abstract
Background: During development, gustatory (taste) neurons likely undergo numerous changes in morphology and expression prior to differentiation into maturity, but little is known this process or the factors that regulate it. Neuron differentiation is likely regulated by a combination of transcription and growth factors. Embryonically, most geniculate neuron development is regulated by the growth factor brain derived neurotrophic factor (BDNF). Postnatally, however, BDNF expression becomes restricted to subpopulations of taste receptor cells with specific functions. We hypothesized that during development, the receptor for BDNF, tropomyosin kinase B receptor (TrkB), may also become developmentally restricted to a subset of taste neurons and could be one factor that is differentially expressed across taste neuron subsets.
Methods: We used transgenic mouse models to label both geniculate neurons innervating the oral cavity (Phox2b+), which are primarily taste, from those projecting to the outer ear (auricular neurons) to label TrkB expressing neurons (TrkBGFP). We also compared neuron number, taste bud number, and taste receptor cell types in wild-type animals and conditional TrkB knockouts.
Results: Between E15.5-E17.5, TrkB receptor expression becomes restricted to half of the Phox2b + neurons. This TrkB downregulation was specific to oral cavity projecting neurons, since TrkB expression remained constant throughout development in the auricular geniculate neurons (Phox2b-). Conditional TrkB removal from oral sensory neurons (Phox2b+) reduced this population to 92% of control levels, indicating that only 8% of these neurons do not depend on TrkB for survival during development. The remaining neurons failed to innervate any remaining taste buds, 14% of which remained despite the complete loss of innervation. Finally, some types of taste receptor cells (Car4+) were more dependent on innervation than others (PLCβ2+).
Conclusions: Together, these findings indicate that TrkB expression and dependence divides gustatory neurons into three subpopulations: 1) neurons that always express TrkB and are TrkB-dependent during development (50%), 2) neurons dependent on TrkB during development but that downregulate TrkB expression between E15.5 and E17.5 (41%), and 3) neurons that never express or depend on TrkB (9%). These TrkB-independent neurons are likely non-gustatory, as they do not innervate taste buds.
期刊介绍:
Neural Development is a peer-reviewed open access, online journal, which features studies that use molecular, cellular, physiological or behavioral methods to provide novel insights into the mechanisms that underlie the formation of the nervous system.
Neural Development aims to discover how the nervous system arises and acquires the abilities to sense the world and control adaptive motor output. The field includes analysis of how progenitor cells form a nervous system during embryogenesis, and how the initially formed neural circuits are shaped by experience during early postnatal life. Some studies use well-established, genetically accessible model systems, but valuable insights are also obtained from less traditional models that provide behavioral or evolutionary insights.