Guijun Sun, Yang Yang, Xiaoyan Lu, Qing Liu, Shengrong Wu, Jiajia Jin, Zixiao Huang, Xiangyi He
{"title":"Comparison of Periodontal Ligament Cell Lines with Adenovirus- and Lentivirus-Mediated Human Telomerase Reverse Transcription Expression.","authors":"Guijun Sun, Yang Yang, Xiaoyan Lu, Qing Liu, Shengrong Wu, Jiajia Jin, Zixiao Huang, Xiangyi He","doi":"10.1089/hgtb.2018.184","DOIUrl":null,"url":null,"abstract":"<p><p>The aims of this study were to generate periodontal ligament (PDL) cells that have adenovirus- or lentivirus-mediated overexpression of human telomerase reverse transcriptase (<i>hTERT</i>) and to compare the osteogenic and proliferative abilities of the two cell lines to establish an efficient and stable cell model that will be more suitable for studies of PDL regeneration. After construction of the recombinant adenovirus plasmid pAd-pshuttle-cmv-hTERT, human PDL cells were infected by packaged adenovirus and lentivirus particles to establish two PDL cell lines. The expression levels of <i>hTERT</i> and mRNA for alkaline phosphatase, osteopontin, osteocalcin, bone sialoprotein, core-binding factor (runt-related transcription factor 2), and type I collagen were assessed for each cell line. After culture in osteoinductive culture medium for 14 days, the PDL cells were stained with alizarin red to observe formation of mineralized nodules, and proliferation activity was measured with a CCK-8 kit. A quantitative polymerase chain reaction assay indicated that the two transduced cell lines expressed <i>hTERT</i> levels that were significantly higher than that seen for normal PDL cells. Expression of all osteogenic genes tested, with the exception of osteopontin, was higher for both the adenovirus- and lentivirus-transduced cells relative to normal PDL cells. The expression of bone sialoprotein, osteocalcin, and runt-related transcription factor 2 in adenovirus-transduced cells was significantly higher than that for lentivirus-transduced cells. Alizarin red staining showed that the adenovirus-transduced cell line produced more mineralized nodules than the lentivirus-transduced cell line, whereas a CCK-8 test showed that the adenovirus-transduced cell line had higher proliferation activity than lentivirus-transduced cells. In conclusion, a PDL cell line established by adenovirus transduction had superior osteogenic differentiation and proliferative activity compared to the cell line produced by lentivirus transduction. The results indicate that PDL cells having adenovirus-mediated expression of <i>hTERT</i> would be a more suitable model for studies of PDL regeneration.</p>","PeriodicalId":13126,"journal":{"name":"Human Gene Therapy Methods","volume":"30 2","pages":"53-59"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/hgtb.2018.184","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Gene Therapy Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/hgtb.2018.184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/2/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 4
Abstract
The aims of this study were to generate periodontal ligament (PDL) cells that have adenovirus- or lentivirus-mediated overexpression of human telomerase reverse transcriptase (hTERT) and to compare the osteogenic and proliferative abilities of the two cell lines to establish an efficient and stable cell model that will be more suitable for studies of PDL regeneration. After construction of the recombinant adenovirus plasmid pAd-pshuttle-cmv-hTERT, human PDL cells were infected by packaged adenovirus and lentivirus particles to establish two PDL cell lines. The expression levels of hTERT and mRNA for alkaline phosphatase, osteopontin, osteocalcin, bone sialoprotein, core-binding factor (runt-related transcription factor 2), and type I collagen were assessed for each cell line. After culture in osteoinductive culture medium for 14 days, the PDL cells were stained with alizarin red to observe formation of mineralized nodules, and proliferation activity was measured with a CCK-8 kit. A quantitative polymerase chain reaction assay indicated that the two transduced cell lines expressed hTERT levels that were significantly higher than that seen for normal PDL cells. Expression of all osteogenic genes tested, with the exception of osteopontin, was higher for both the adenovirus- and lentivirus-transduced cells relative to normal PDL cells. The expression of bone sialoprotein, osteocalcin, and runt-related transcription factor 2 in adenovirus-transduced cells was significantly higher than that for lentivirus-transduced cells. Alizarin red staining showed that the adenovirus-transduced cell line produced more mineralized nodules than the lentivirus-transduced cell line, whereas a CCK-8 test showed that the adenovirus-transduced cell line had higher proliferation activity than lentivirus-transduced cells. In conclusion, a PDL cell line established by adenovirus transduction had superior osteogenic differentiation and proliferative activity compared to the cell line produced by lentivirus transduction. The results indicate that PDL cells having adenovirus-mediated expression of hTERT would be a more suitable model for studies of PDL regeneration.
期刊介绍:
Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases.
The Journal is divided into three parts. Human Gene Therapy, the flagship, is published 12 times per year. HGT Methods, a bimonthly journal, focuses on the applications of gene therapy to product testing and development. HGT Clinical Development, a quarterly journal, serves as a venue for publishing data relevant to the regulatory review and commercial development of cell and gene therapy products.