Ironing out the Brain.

Roberta J Ward, Robert R Crichton
{"title":"Ironing out the Brain.","authors":"Roberta J Ward,&nbsp;Robert R Crichton","doi":"10.1515/9783110527872-010","DOIUrl":null,"url":null,"abstract":"<p><p>Our understanding of the broad principles of cellular and systemic iron homeostasis in man are well established with the exception of the brain. Most of the proteins involved in mammalian iron metabolism are present in the brain, although their distribution and precise roles in iron uptake, intracellular metabolism and export are still uncertain, as is the way in which systemic iron is transferred across the blood-brain barrier. We briefly review current concepts concerning the uptake and distribution of iron in the brain, before turning to the ways in which brain iron homeostasis might be regulated. The distribution of iron between different brain regions is then discussed as is the increase in brain iron with normal aging, and the different forms in which iron is present. The increased levels of iron found in specific brain regions and their potential contribution to neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, Huntington's disease and other polyglutamine expansion diseases, amyotrophic lateral sclerosis, Friedreich's ataxia, as well as a number of neurodegenerative diseases with iron accumulation, are discussed. The interactions between neuroinflammation and iron are presented, and the chapter concludes with a review of current clinical studies and discussion of the potential and efficacy of iron chelation therapy in the treatment of neurodegenerative diseases.</p>","PeriodicalId":18698,"journal":{"name":"Metal ions in life sciences","volume":"19 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/9783110527872-010","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal ions in life sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783110527872-010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Our understanding of the broad principles of cellular and systemic iron homeostasis in man are well established with the exception of the brain. Most of the proteins involved in mammalian iron metabolism are present in the brain, although their distribution and precise roles in iron uptake, intracellular metabolism and export are still uncertain, as is the way in which systemic iron is transferred across the blood-brain barrier. We briefly review current concepts concerning the uptake and distribution of iron in the brain, before turning to the ways in which brain iron homeostasis might be regulated. The distribution of iron between different brain regions is then discussed as is the increase in brain iron with normal aging, and the different forms in which iron is present. The increased levels of iron found in specific brain regions and their potential contribution to neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, Huntington's disease and other polyglutamine expansion diseases, amyotrophic lateral sclerosis, Friedreich's ataxia, as well as a number of neurodegenerative diseases with iron accumulation, are discussed. The interactions between neuroinflammation and iron are presented, and the chapter concludes with a review of current clinical studies and discussion of the potential and efficacy of iron chelation therapy in the treatment of neurodegenerative diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
熨平大脑。
除了大脑,我们对人体细胞和全身铁稳态的广泛原理的理解已经很好地建立起来了。大多数参与哺乳动物铁代谢的蛋白质都存在于大脑中,尽管它们在铁摄取、细胞内代谢和输出中的分布和确切作用仍然不确定,全身铁通过血脑屏障转移的方式也不确定。我们简要回顾了目前关于铁在大脑中的摄取和分布的概念,然后转向大脑铁稳态可能被调节的方式。然后讨论了不同大脑区域之间铁的分布,以及正常衰老过程中脑铁的增加,以及铁存在的不同形式。在特定脑区发现的铁水平增加及其对神经退行性疾病的潜在贡献,包括帕金森病,阿尔茨海默病,亨廷顿病和其他聚谷氨酰胺扩张疾病,肌萎缩性侧索硬化症,弗里德赖希共济失调,以及一些与铁积累有关的神经退行性疾病。本章介绍了神经炎症和铁之间的相互作用,最后回顾了目前的临床研究,并讨论了铁螯合治疗神经退行性疾病的潜力和疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Introduction: Transition Metals and Sulfur. Sulfur, the Versatile Non-metal. The Type 1 Blue Copper Site: From Electron Transfer to Biological Function. Purple Mixed-Valent Copper A. The Tetranuclear Copper-Sulfide Center of Nitrous Oxide Reductase.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1