Frame-based Programming, Stream-Based Processing for Medical Image Processing Applications.

IF 1.6 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Signal Processing Systems for Signal Image and Video Technology Pub Date : 2019-01-01 Epub Date: 2019-01-04 DOI:10.1007/s11265-018-1422-3
Joost Hoozemans, Rob de Jong, Steven van der Vlugt, Jeroen Van Straten, Uttam Kumar Elango, Zaid Al-Ars
{"title":"Frame-based Programming, Stream-Based Processing for Medical Image Processing Applications.","authors":"Joost Hoozemans,&nbsp;Rob de Jong,&nbsp;Steven van der Vlugt,&nbsp;Jeroen Van Straten,&nbsp;Uttam Kumar Elango,&nbsp;Zaid Al-Ars","doi":"10.1007/s11265-018-1422-3","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents and evaluates an approach to deploy image and video processing pipelines that are developed frame-oriented on a hardware platform that is stream-oriented, such as an FPGA. First, this calls for a specialized streaming memory hierarchy and accompanying software framework that transparently moves image segments between stages in the image processing pipeline. Second, we use softcore VLIW processors, that are targetable by a C compiler and have hardware debugging capabilities, to evaluate and debug the software before moving to a High-Level Synthesis flow. The algorithm development phase, including debugging and optimizing on the target platform, is often a very time consuming step in the development of a new product. Our proposed platform allows both software developers and hardware designers to test iterations in a matter of seconds (compilation time) instead of hours (synthesis or circuit simulation time).</p>","PeriodicalId":50050,"journal":{"name":"Journal of Signal Processing Systems for Signal Image and Video Technology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11265-018-1422-3","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Signal Processing Systems for Signal Image and Video Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11265-018-1422-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents and evaluates an approach to deploy image and video processing pipelines that are developed frame-oriented on a hardware platform that is stream-oriented, such as an FPGA. First, this calls for a specialized streaming memory hierarchy and accompanying software framework that transparently moves image segments between stages in the image processing pipeline. Second, we use softcore VLIW processors, that are targetable by a C compiler and have hardware debugging capabilities, to evaluate and debug the software before moving to a High-Level Synthesis flow. The algorithm development phase, including debugging and optimizing on the target platform, is often a very time consuming step in the development of a new product. Our proposed platform allows both software developers and hardware designers to test iterations in a matter of seconds (compilation time) instead of hours (synthesis or circuit simulation time).

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于帧的编程,基于流的医学图像处理应用。
本文提出并评估了一种在面向流的硬件平台(如FPGA)上部署面向帧的图像和视频处理管道的方法。首先,这需要一个专门的流存储器层次结构和伴随的软件框架,它可以透明地在图像处理管道的各个阶段之间移动图像段。其次,我们使用软核VLIW处理器,它可以被C编译器定位并具有硬件调试功能,在移动到高级合成流程之前评估和调试软件。算法开发阶段,包括在目标平台上的调试和优化,通常是新产品开发中非常耗时的步骤。我们提出的平台允许软件开发人员和硬件设计人员在几秒钟(编译时间)内测试迭代,而不是几小时(合成或电路模拟时间)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
106
审稿时长
4-8 weeks
期刊介绍: The Journal of Signal Processing Systems for Signal, Image, and Video Technology publishes research papers on the design and implementation of signal processing systems, with or without VLSI circuits. The journal is published in twelve issues and is distributed to engineers, researchers, and educators in the general field of signal processing systems.
期刊最新文献
Prediction of Bus Passenger Traffic using Gaussian Process Regression. Signal Processing Techniques for 6G. LSTM Network Integrated with Particle Filter for Predicting the Bus Passenger Traffic. An Analysis of Image Features Extracted by CNNs to Design Classification Models for COVID-19 and Non-COVID-19. Fine-tuning-based Transfer Learning for Characterization of Adeno-Associated Virus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1