A Common-Ground Review of the Potential for Machine Learning Approaches in Electrocardiographic Imaging Based on Probabilistic Graphical Models.

Jaume Coll-Font, Linwei Wang, Dana H Brooks
{"title":"A Common-Ground Review of the Potential for Machine Learning Approaches in Electrocardiographic Imaging Based on Probabilistic Graphical Models.","authors":"Jaume Coll-Font, Linwei Wang, Dana H Brooks","doi":"10.22489/CinC.2018.348","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning (ML) methods have seen an explosion in their development and application. They are increasingly being used in many different fields with considerable success. However, although the interest is growing, their impact in the field of electrocardiographic imaging (ECGI) remains limited. One of the main reasons that ML has yet to become more prevalent in ECGI is that the published literature is scattered and there is no common ground description and comparison of these methods in an ML framework. Here we address this limitation with a review of ECGI methods from the perspective of ML. We will use probabilistic modeling to provide a common ground framework to compare different methods and well known approaches. Finally, we will discuss which approaches have been used to do inference on these models and which alternatives could be utilized as the methods in ML become more mature.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6424344/pdf/nihms-1010745.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2018.348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning (ML) methods have seen an explosion in their development and application. They are increasingly being used in many different fields with considerable success. However, although the interest is growing, their impact in the field of electrocardiographic imaging (ECGI) remains limited. One of the main reasons that ML has yet to become more prevalent in ECGI is that the published literature is scattered and there is no common ground description and comparison of these methods in an ML framework. Here we address this limitation with a review of ECGI methods from the perspective of ML. We will use probabilistic modeling to provide a common ground framework to compare different methods and well known approaches. Finally, we will discuss which approaches have been used to do inference on these models and which alternatives could be utilized as the methods in ML become more mature.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于概率图形模型的心电图成像中机器学习方法的潜力综述。
机器学习(ML)方法在其开发和应用中出现了爆炸式增长。它们越来越多地被用于许多不同的领域,并取得了相当大的成功。然而,尽管人们越来越感兴趣,但它们在心电图成像(ECGI)领域的影响仍然有限。ML在ECGI中尚未变得更加普遍的主要原因之一是已发表的文献分散,并且在ML框架中没有对这些方法的共同点描述和比较。在这里,我们从ML的角度对ECGI方法进行了回顾,以解决这一限制。我们将使用概率建模来提供一个共同的基础框架,以比较不同的方法和众所周知的方法。最后,我们将讨论哪些方法已被用于对这些模型进行推理,以及随着ML中的方法变得更加成熟,可以使用哪些替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
Transfer Learning for Improved Classification of Drivers in Atrial Fibrillation. Effects of Biventricular Pacing Locations on Anti-Tachycardia Pacing Success in a Patient-Specific Model. Deep Learning System for Left Ventricular Assist Device Candidate Assessment from Electrocardiograms. Capturing the Influence of Conduction Velocity on Epicardial Activation Patterns Using Uncertainty Quantification. Comparison of Machine Learning Detection of Low Left Ventricular Ejection Fraction Using Individual ECG Leads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1