Sophiya Karki, Shiladitya Banerjee, Kaitlin Mclean, Aaron Dinner, Marcus R Clark
{"title":"Transcription factories in Igκ allelic choice and diversity.","authors":"Sophiya Karki, Shiladitya Banerjee, Kaitlin Mclean, Aaron Dinner, Marcus R Clark","doi":"10.1016/bs.ai.2018.11.001","DOIUrl":null,"url":null,"abstract":"<p><p>The vertebrate immune system is tasked with the challenge of responding to any pathogen the organism might encounter, and retaining memory of that pathogen in case of future infection. Recognition and memory of pathogens are encoded within the adaptive immune system and production of T and B lymphocytes with diverse antigen receptor repertoires. In B lymphocytes, diversity is generated by sequential recombination between Variable (V), Diversity (D) and Joining (J) gene segments in the immunoglobulin heavy chain gene (Igh) and subsequent V-J recombination in immunoglobulin light chain genes (Igκ followed by Igλ). However, the process by which particular V, D and J segments are selected during recombination, and stochasticity is maintained to ensure antibody repertoire diversity, is still unclear. In this review, we focus on Igκ and recent findings regarding the relationships between gene structure, the generation of diversity and allelic choice. Surprisingly, the nuclear environment in which each Igκ allele resides, including transcription factories assembled on the nuclear matrix, plays critical roles in both gene regulation and in shaping the diversity of Vκ genes accessible to recombination. These findings provide a new paradigm for understanding Igκ recombination and Vκ diversity in the context of B lymphopoiesis.</p>","PeriodicalId":50862,"journal":{"name":"Advances in Immunology","volume":"141 ","pages":"33-49"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.ai.2018.11.001","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/bs.ai.2018.11.001","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/12/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 3
Abstract
The vertebrate immune system is tasked with the challenge of responding to any pathogen the organism might encounter, and retaining memory of that pathogen in case of future infection. Recognition and memory of pathogens are encoded within the adaptive immune system and production of T and B lymphocytes with diverse antigen receptor repertoires. In B lymphocytes, diversity is generated by sequential recombination between Variable (V), Diversity (D) and Joining (J) gene segments in the immunoglobulin heavy chain gene (Igh) and subsequent V-J recombination in immunoglobulin light chain genes (Igκ followed by Igλ). However, the process by which particular V, D and J segments are selected during recombination, and stochasticity is maintained to ensure antibody repertoire diversity, is still unclear. In this review, we focus on Igκ and recent findings regarding the relationships between gene structure, the generation of diversity and allelic choice. Surprisingly, the nuclear environment in which each Igκ allele resides, including transcription factories assembled on the nuclear matrix, plays critical roles in both gene regulation and in shaping the diversity of Vκ genes accessible to recombination. These findings provide a new paradigm for understanding Igκ recombination and Vκ diversity in the context of B lymphopoiesis.
期刊介绍:
Advances in Immunology has provided students and researchers with the latest information in Immunology for over 50 years. You can continue to rely on Advances in Immunology to provide you with critical reviews that examine subjects of vital importance to the field through summary and evaluation of current knowledge and research. The articles stress fundamental concepts, but also evaluate the experimental approaches.