{"title":"Development of the hematopoietic system: Role of inflammatory factors.","authors":"Yoshikazu Hayashi, Maiko Sezaki, Hitoshi Takizawa","doi":"10.1002/wdev.341","DOIUrl":null,"url":null,"abstract":"<p><p>Hematopoietic stem cells (HSCs) have two defining features, multipotency and self-renewal, both of which are tightly controlled by cell autonomous programs and environmental factors throughout the lifetime of an organism. During development, HSCs are born in the aorta-gonad-mesonephros region, and migrate to distinct hematopoietic organs such as the placenta, fetal liver and spleen, continuously self-renewing and expanding to reach a homeostatic number. HSCs ultimately seed the bone marrow around the time of birth and become dormant to sustain lifelong hematopoiesis. In this review, we will summarize the recent findings on the role of inflammatory factors regulating HSC development, that is, emergence, trafficking and differentiation. An understanding of HSC kinetics during developmental processes will provide useful knowledge on HSC behavior under physiological and pathophysiological conditions. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Environmental Control of Stem Cells.</p>","PeriodicalId":23630,"journal":{"name":"Wiley Interdisciplinary Reviews: Developmental Biology","volume":"8 4","pages":"e341"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wdev.341","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wdev.341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/3/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 8
Abstract
Hematopoietic stem cells (HSCs) have two defining features, multipotency and self-renewal, both of which are tightly controlled by cell autonomous programs and environmental factors throughout the lifetime of an organism. During development, HSCs are born in the aorta-gonad-mesonephros region, and migrate to distinct hematopoietic organs such as the placenta, fetal liver and spleen, continuously self-renewing and expanding to reach a homeostatic number. HSCs ultimately seed the bone marrow around the time of birth and become dormant to sustain lifelong hematopoiesis. In this review, we will summarize the recent findings on the role of inflammatory factors regulating HSC development, that is, emergence, trafficking and differentiation. An understanding of HSC kinetics during developmental processes will provide useful knowledge on HSC behavior under physiological and pathophysiological conditions. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Environmental Control of Stem Cells.
期刊介绍:
Developmental biology is concerned with the fundamental question of how a single cell, the fertilized egg, ultimately produces a complex, fully patterned adult organism. This problem is studied on many different biological levels, from the molecular to the organismal. Developed in association with the Society for Developmental Biology, WIREs Developmental Biology will provide a unique interdisciplinary forum dedicated to fostering excellence in research and education and communicating key advances in this important field. The collaborative and integrative ethos of the WIREs model will facilitate connections to related disciplines such as genetics, systems biology, bioengineering, and psychology.
The topical coverage of WIREs Developmental Biology includes: Establishment of Spatial and Temporal Patterns; Gene Expression and Transcriptional Hierarchies; Signaling Pathways; Early Embryonic Development; Invertebrate Organogenesis; Vertebrate Organogenesis; Nervous System Development; Birth Defects; Adult Stem Cells, Tissue Renewal and Regeneration; Cell Types and Issues Specific to Plants; Comparative Development and Evolution; and Technologies.