GNE: a deep learning framework for gene network inference by aggregating biological information.

Q1 Mathematics BMC Systems Biology Pub Date : 2019-04-05 DOI:10.1186/s12918-019-0694-y
Kishan Kc, Rui Li, Feng Cui, Qi Yu, Anne R Haake
{"title":"GNE: a deep learning framework for gene network inference by aggregating biological information.","authors":"Kishan Kc,&nbsp;Rui Li,&nbsp;Feng Cui,&nbsp;Qi Yu,&nbsp;Anne R Haake","doi":"10.1186/s12918-019-0694-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The topological landscape of gene interaction networks provides a rich source of information for inferring functional patterns of genes or proteins. However, it is still a challenging task to aggregate heterogeneous biological information such as gene expression and gene interactions to achieve more accurate inference for prediction and discovery of new gene interactions. In particular, how to generate a unified vector representation to integrate diverse input data is a key challenge addressed here.</p><p><strong>Results: </strong>We propose a scalable and robust deep learning framework to learn embedded representations to unify known gene interactions and gene expression for gene interaction predictions. These low- dimensional embeddings derive deeper insights into the structure of rapidly accumulating and diverse gene interaction networks and greatly simplify downstream modeling. We compare the predictive power of our deep embeddings to the strong baselines. The results suggest that our deep embeddings achieve significantly more accurate predictions. Moreover, a set of novel gene interaction predictions are validated by up-to-date literature-based database entries.</p><p><strong>Conclusion: </strong>The proposed model demonstrates the importance of integrating heterogeneous information about genes for gene network inference. GNE is freely available under the GNU General Public License and can be downloaded from GitHub ( https://github.com/kckishan/GNE ).</p>","PeriodicalId":9013,"journal":{"name":"BMC Systems Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12918-019-0694-y","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12918-019-0694-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 42

Abstract

Background: The topological landscape of gene interaction networks provides a rich source of information for inferring functional patterns of genes or proteins. However, it is still a challenging task to aggregate heterogeneous biological information such as gene expression and gene interactions to achieve more accurate inference for prediction and discovery of new gene interactions. In particular, how to generate a unified vector representation to integrate diverse input data is a key challenge addressed here.

Results: We propose a scalable and robust deep learning framework to learn embedded representations to unify known gene interactions and gene expression for gene interaction predictions. These low- dimensional embeddings derive deeper insights into the structure of rapidly accumulating and diverse gene interaction networks and greatly simplify downstream modeling. We compare the predictive power of our deep embeddings to the strong baselines. The results suggest that our deep embeddings achieve significantly more accurate predictions. Moreover, a set of novel gene interaction predictions are validated by up-to-date literature-based database entries.

Conclusion: The proposed model demonstrates the importance of integrating heterogeneous information about genes for gene network inference. GNE is freely available under the GNU General Public License and can be downloaded from GitHub ( https://github.com/kckishan/GNE ).

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GNE:一个通过聚合生物信息进行基因网络推理的深度学习框架。
背景:基因相互作用网络的拓扑景观为推断基因或蛋白质的功能模式提供了丰富的信息来源。然而,如何整合基因表达、基因相互作用等异质生物信息,以实现更准确的推断,从而预测和发现新的基因相互作用,仍然是一项具有挑战性的任务。特别是,如何生成统一的向量表示来集成不同的输入数据是这里要解决的一个关键挑战。结果:我们提出了一个可扩展和鲁棒的深度学习框架来学习嵌入式表示,以统一已知的基因相互作用和基因表达,用于基因相互作用预测。这些低维嵌入对快速积累和多样化的基因相互作用网络的结构有了更深入的了解,并大大简化了下游建模。我们将深度嵌入的预测能力与强基线进行比较。结果表明,我们的深度嵌入实现了更准确的预测。此外,一组新的基因相互作用预测是由最新的文献为基础的数据库条目验证。结论:该模型证明了整合基因异构信息对基因网络推断的重要性。GNE在GNU通用公共许可证下免费提供,可以从GitHub (https://github.com/kckishan/GNE)下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Systems Biology
BMC Systems Biology 生物-数学与计算生物学
CiteScore
6.30
自引率
0.00%
发文量
0
审稿时长
9 months
期刊介绍: Cessation. BMC Systems Biology is an open access journal publishing original peer-reviewed research articles in experimental and theoretical aspects of the function of biological systems at the molecular, cellular or organismal level, in particular those addressing the engineering of biological systems, network modelling, quantitative analyses, integration of different levels of information and synthetic biology.
期刊最新文献
Correction to: A quantitative systems pharmacology (QSP) model for Pneumocystis treatment in mice Identification of Hürthle cell cancers: solving a clinical challenge with genomic sequencing and a trio of machine learning algorithms. Anti-TNF- αtreatment-related pathways and biomarkers revealed by transcriptome analysis in Chinese psoriasis patients. Boolean network modeling of β-cell apoptosis and insulin resistance in type 2 diabetes mellitus. Ultrafast clustering of single-cell flow cytometry data using FlowGrid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1