{"title":"Dynamic regulation of hematopoietic stem cells by bone marrow niches.","authors":"Margot May, Anastasiya Slaughter, Daniel Lucas","doi":"10.1007/s40778-018-0132-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Hematopoietic stem cells (HSC) reside in a specialized microenvironment called the HSC niche. While key components of the niche have been known for several years, recent advances have identified several additional cell types that regulate HSC in the bone marrow (BM). Here we review our current understanding of the components and dynamics of the HSC niche.</p><p><strong>Recent findings: </strong>While the niche has been considered a stable structure, recent advances clearly show that the niche is regulated in a dynamic manner to control HSC traffic and function. Moreover the niche can rapidly remodel in response to insults to the BM in a process controlled by positive and negative regulators.</p><p><strong>Summary: </strong>Multiple niche cells have been shown to be dynamically regulated by systemic and local signals to influence how the niche controls HSC function. Elucidating how different components of the niche coordinate to orchestrate HSC behavior is essential to understand how the hematopoietic system adjusts blood cell production to the demands of the body.</p>","PeriodicalId":37444,"journal":{"name":"Current Stem Cell Reports","volume":"4 3","pages":"201-208"},"PeriodicalIF":2.3000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40778-018-0132-x","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Stem Cell Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40778-018-0132-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/8/2 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 14
Abstract
Purpose of review: Hematopoietic stem cells (HSC) reside in a specialized microenvironment called the HSC niche. While key components of the niche have been known for several years, recent advances have identified several additional cell types that regulate HSC in the bone marrow (BM). Here we review our current understanding of the components and dynamics of the HSC niche.
Recent findings: While the niche has been considered a stable structure, recent advances clearly show that the niche is regulated in a dynamic manner to control HSC traffic and function. Moreover the niche can rapidly remodel in response to insults to the BM in a process controlled by positive and negative regulators.
Summary: Multiple niche cells have been shown to be dynamically regulated by systemic and local signals to influence how the niche controls HSC function. Elucidating how different components of the niche coordinate to orchestrate HSC behavior is essential to understand how the hematopoietic system adjusts blood cell production to the demands of the body.
期刊介绍:
The goal of this journal is to publish cutting-edge reviews on subjects pertinent to all aspects of stem cell research, therapy, ethics, commercialization, and policy. We aim to provide incisive, insightful, and balanced contributions from leading experts in each relevant domain that will be of immediate interest to a wide readership of clinicians, basic scientists, and translational investigators.
We accomplish this aim by appointing major authorities to serve as Section Editors in key subject areas across the discipline. Section Editors select topics to be reviewed by leading experts who emphasize recent developments and highlight important papers published over the past year on their topics, in a crisp and readable format. We also provide commentaries from well-known figures in the field, and an Editorial Board of internationally diverse members suggests topics of special interest to their country/region and ensures that topics are current and include emerging research.