Dynamic regulation of hematopoietic stem cells by bone marrow niches.

IF 2.3 Q4 CELL & TISSUE ENGINEERING Current Stem Cell Reports Pub Date : 2018-09-01 Epub Date: 2018-08-02 DOI:10.1007/s40778-018-0132-x
Margot May, Anastasiya Slaughter, Daniel Lucas
{"title":"Dynamic regulation of hematopoietic stem cells by bone marrow niches.","authors":"Margot May,&nbsp;Anastasiya Slaughter,&nbsp;Daniel Lucas","doi":"10.1007/s40778-018-0132-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Hematopoietic stem cells (HSC) reside in a specialized microenvironment called the HSC niche. While key components of the niche have been known for several years, recent advances have identified several additional cell types that regulate HSC in the bone marrow (BM). Here we review our current understanding of the components and dynamics of the HSC niche.</p><p><strong>Recent findings: </strong>While the niche has been considered a stable structure, recent advances clearly show that the niche is regulated in a dynamic manner to control HSC traffic and function. Moreover the niche can rapidly remodel in response to insults to the BM in a process controlled by positive and negative regulators.</p><p><strong>Summary: </strong>Multiple niche cells have been shown to be dynamically regulated by systemic and local signals to influence how the niche controls HSC function. Elucidating how different components of the niche coordinate to orchestrate HSC behavior is essential to understand how the hematopoietic system adjusts blood cell production to the demands of the body.</p>","PeriodicalId":37444,"journal":{"name":"Current Stem Cell Reports","volume":"4 3","pages":"201-208"},"PeriodicalIF":2.3000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40778-018-0132-x","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Stem Cell Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40778-018-0132-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/8/2 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 14

Abstract

Purpose of review: Hematopoietic stem cells (HSC) reside in a specialized microenvironment called the HSC niche. While key components of the niche have been known for several years, recent advances have identified several additional cell types that regulate HSC in the bone marrow (BM). Here we review our current understanding of the components and dynamics of the HSC niche.

Recent findings: While the niche has been considered a stable structure, recent advances clearly show that the niche is regulated in a dynamic manner to control HSC traffic and function. Moreover the niche can rapidly remodel in response to insults to the BM in a process controlled by positive and negative regulators.

Summary: Multiple niche cells have been shown to be dynamically regulated by systemic and local signals to influence how the niche controls HSC function. Elucidating how different components of the niche coordinate to orchestrate HSC behavior is essential to understand how the hematopoietic system adjusts blood cell production to the demands of the body.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
骨髓生态位对造血干细胞的动态调控。
综述目的:造血干细胞(HSC)存在于一个称为HSC生态位的特殊微环境中。虽然这个生态位的关键成分已经知道了几年,但最近的进展已经确定了几种调节骨髓中HSC的额外细胞类型(BM)。在这里,我们回顾了我们目前对HSC生态位的组成和动态的理解。最近的发现:虽然生态位被认为是一个稳定的结构,但最近的进展清楚地表明,生态位以一种动态的方式调节来控制HSC的流量和功能。此外,生态位可以在一个由正调节因子和负调节因子控制的过程中迅速重塑,以响应对BM的侮辱。摘要:多个生态位细胞受到系统和局部信号的动态调节,影响生态位如何控制HSC功能。阐明生态位的不同组成部分如何协调协调造血干细胞的行为,对于理解造血系统如何根据身体的需要调整血细胞生产是至关重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Stem Cell Reports
Current Stem Cell Reports Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.30
自引率
0.00%
发文量
19
期刊介绍: The goal of this journal is to publish cutting-edge reviews on subjects pertinent to all aspects of stem cell research, therapy, ethics, commercialization, and policy. We aim to provide incisive, insightful, and balanced contributions from leading experts in each relevant domain that will be of immediate interest to a wide readership of clinicians, basic scientists, and translational investigators. We accomplish this aim by appointing major authorities to serve as Section Editors in key subject areas across the discipline. Section Editors select topics to be reviewed by leading experts who emphasize recent developments and highlight important papers published over the past year on their topics, in a crisp and readable format. We also provide commentaries from well-known figures in the field, and an Editorial Board of internationally diverse members suggests topics of special interest to their country/region and ensures that topics are current and include emerging research.
期刊最新文献
First Clinical Experiences Using Preconditioning Approaches to Improve MSC-Based Therapies Quantitative Modelling in Stem Cell Biology and Beyond: How to Make Best Use of It MSC-Based Cell Therapy for COVID-19-Associated ARDS and Classical ARDS: Comparative Perspectives Machine Learning Approaches for Stem Cells Transcription factors and splice factors - interconnected regulators of stem cell differentiation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1