Interpretable Representation Learning for Healthcare via Capturing Disease Progression through Time.

Tian Bai, Brian L Egleston, Shanshan Zhang, Slobodan Vucetic
{"title":"Interpretable Representation Learning for Healthcare via Capturing Disease Progression through Time.","authors":"Tian Bai, Brian L Egleston, Shanshan Zhang, Slobodan Vucetic","doi":"10.1145/3219819.3219904","DOIUrl":null,"url":null,"abstract":"<p><p>Various deep learning models have recently been applied to predictive modeling of Electronic Health Records (EHR). In medical claims data, which is a particular type of EHR data, each patient is represented as a sequence of temporally ordered irregularly sampled visits to health providers, where each visit is recorded as an unordered set of medical codes specifying patient's diagnosis and treatment provided during the visit. Based on the observation that different patient conditions have different temporal progression patterns, in this paper we propose a novel interpretable deep learning model, called Timeline. The main novelty of Timeline is that it has a mechanism that learns time decay factors for every medical code. This allows the Timeline to learn that chronic conditions have a longer lasting impact on future visits than acute conditions. Timeline also has an attention mechanism that improves vector embeddings of visits. By analyzing the attention weights and disease progression functions of Timeline, it is possible to interpret the predictions and understand how risks of future visits change over time. We evaluated Timeline on two large-scale real world data sets. The specific task was to predict what is the primary diagnosis category for the next hospital visit given previous visits. Our results show that Timeline has higher accuracy than the state of the art deep learning models based on RNN. In addition, we demonstrate that time decay factors and attentions learned by Timeline are in accord with the medical knowledge and that Timeline can provide a useful insight into its predictions.</p>","PeriodicalId":74037,"journal":{"name":"KDD : proceedings. International Conference on Knowledge Discovery & Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6484836/pdf/nihms-1019542.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KDD : proceedings. International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3219819.3219904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Various deep learning models have recently been applied to predictive modeling of Electronic Health Records (EHR). In medical claims data, which is a particular type of EHR data, each patient is represented as a sequence of temporally ordered irregularly sampled visits to health providers, where each visit is recorded as an unordered set of medical codes specifying patient's diagnosis and treatment provided during the visit. Based on the observation that different patient conditions have different temporal progression patterns, in this paper we propose a novel interpretable deep learning model, called Timeline. The main novelty of Timeline is that it has a mechanism that learns time decay factors for every medical code. This allows the Timeline to learn that chronic conditions have a longer lasting impact on future visits than acute conditions. Timeline also has an attention mechanism that improves vector embeddings of visits. By analyzing the attention weights and disease progression functions of Timeline, it is possible to interpret the predictions and understand how risks of future visits change over time. We evaluated Timeline on two large-scale real world data sets. The specific task was to predict what is the primary diagnosis category for the next hospital visit given previous visits. Our results show that Timeline has higher accuracy than the state of the art deep learning models based on RNN. In addition, we demonstrate that time decay factors and attentions learned by Timeline are in accord with the medical knowledge and that Timeline can provide a useful insight into its predictions.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过捕捉疾病随时间的进展为医疗保健提供可解释的表征学习。
各种深度学习模型最近被应用于电子健康记录(EHR)的预测建模。在医疗索赔数据中,这是一种特定类型的EHR数据,每个患者都被表示为对医疗服务提供者的一系列时间有序的不规则抽样就诊,其中每个就诊都被记录为一组无序的医疗代码,指定患者在就诊期间提供的诊断和治疗。基于对不同患者状况具有不同时间进展模式的观察,本文提出了一种新的可解释深度学习模型,称为Timeline。Timeline的主要新颖之处在于它有一种机制,可以学习每个医疗代码的时间衰减因子。这使Timeline了解到,慢性疾病对未来就诊的影响比急性疾病更持久。Timeline还有一个注意力机制,可以改进访问的向量嵌入。通过分析Timeline的注意力权重和疾病进展函数,可以解释预测,并了解未来就诊的风险如何随时间变化。我们在两个大规模的真实世界数据集上评估了Timeline。具体任务是预测在之前就诊的情况下,下一次医院就诊的主要诊断类别。我们的结果表明,Timeline比现有的基于RNN的深度学习模型具有更高的准确性。此外,我们还证明了Timeline学习到的时间衰减因子和注意事项与医学知识是一致的,Timeline可以为其预测提供有用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting Age-Related Macular Degeneration Progression with Contrastive Attention and Time-Aware LSTM. MolSearch: Search-based Multi-objective Molecular Generation and Property Optimization. Deconfounding Actor-Critic Network with Policy Adaptation for Dynamic Treatment Regimes. MoCL: Data-driven Molecular Fingerprint via Knowledge-aware Contrastive Learning from Molecular Graph. Federated Adversarial Debiasing for Fair and Transferable Representations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1