Prediction and Characterization of miRNA/Target Pairs in Non-Model Plants Using RNA-seq

Q1 Agricultural and Biological Sciences Current protocols in plant biology Pub Date : 2019-05-13 DOI:10.1002/cppb.20090
Kira C. M. Neller, Alexander Klenov, Katalin A. Hudak
{"title":"Prediction and Characterization of miRNA/Target Pairs in Non-Model Plants Using RNA-seq","authors":"Kira C. M. Neller,&nbsp;Alexander Klenov,&nbsp;Katalin A. Hudak","doi":"10.1002/cppb.20090","DOIUrl":null,"url":null,"abstract":"<p>Plant microRNAs (miRNAs) are ∼20- to 24-nucleotide small RNAs that post-transcriptionally regulate gene expression of mRNA targets. Here, we present a workflow to characterize the miRNA transcriptome of a non-model plant, focusing on miRNAs and targets that are differentially expressed under one experimental treatment. We cover RNA-seq experimental design to create paired small RNA and mRNA libraries and perform quality control of raw data, de novo mRNA transcriptome assembly and annotation, miRNA prediction, differential expression, target identification, and functional enrichment analysis. Additionally, we include validation of differential expression and miRNA-induced target cleavage using qRT-PCR and modified RNA ligase–mediated 5′ rapid amplification of cDNA ends, respectively. Our procedure relies on freely available software and web resources. It is intended for users that lack programming skills but can navigate a command-line interface. To enable an understanding of formatting requirements and anticipated results, we provide sample RNA-seq data and key input/output files for each stage. © 2019 The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.</p>","PeriodicalId":10932,"journal":{"name":"Current protocols in plant biology","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cppb.20090","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in plant biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cppb.20090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Plant microRNAs (miRNAs) are ∼20- to 24-nucleotide small RNAs that post-transcriptionally regulate gene expression of mRNA targets. Here, we present a workflow to characterize the miRNA transcriptome of a non-model plant, focusing on miRNAs and targets that are differentially expressed under one experimental treatment. We cover RNA-seq experimental design to create paired small RNA and mRNA libraries and perform quality control of raw data, de novo mRNA transcriptome assembly and annotation, miRNA prediction, differential expression, target identification, and functional enrichment analysis. Additionally, we include validation of differential expression and miRNA-induced target cleavage using qRT-PCR and modified RNA ligase–mediated 5′ rapid amplification of cDNA ends, respectively. Our procedure relies on freely available software and web resources. It is intended for users that lack programming skills but can navigate a command-line interface. To enable an understanding of formatting requirements and anticipated results, we provide sample RNA-seq data and key input/output files for each stage. © 2019 The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用RNA-seq预测和鉴定非模式植物的miRNA/靶对
植物microRNAs (miRNAs)是约20- 24个核苷酸的小rna,其转录后调节mRNA靶点的基因表达。在这里,我们提出了一个工作流程来表征非模式植物的miRNA转录组,重点关注在一个实验处理下差异表达的miRNA和靶标。我们涵盖了RNA-seq实验设计,以创建配对的小RNA和mRNA文库,并进行原始数据的质量控制,从头开始的mRNA转录组组装和注释,miRNA预测,差异表达,目标识别和功能富集分析。此外,我们还分别使用qRT-PCR和修饰RNA连接酶介导的cDNA末端5 '快速扩增来验证差异表达和mirna诱导的目标切割。我们的程序依赖于免费的软件和网络资源。它适用于缺乏编程技能但可以使用命令行界面的用户。为了理解格式要求和预期结果,我们为每个阶段提供了样本RNA-seq数据和关键输入/输出文件。©2019作者。这是一篇在知识共享署名-非商业许可条款下的开放获取文章,该许可允许在任何媒体上使用、分发和复制,前提是原始作品被正确引用,不得用于商业目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current protocols in plant biology
Current protocols in plant biology Agricultural and Biological Sciences-Plant Science
自引率
0.00%
发文量
0
期刊介绍: Sound and reproducible laboratory methods are the foundation of scientific discovery. Yet nuances that are critical for an experiment''s success are not captured in the primary literature but exist only as part of a lab''s oral tradition. Current Protocols in Plant Biology provides reproducible step-by-step instructions for protocols relevant to plant research. Furthermore, Current Protocols content is thoughtfully organized by topic for optimal usage and to maximize contextual knowledge. Quarterly issues allow Current Protocols in Plant Biology to constantly evolve to keep pace with the newest discoveries and developments. Current Protocols in Plant Biology is the comprehensive source for protocols in the multidisciplinary field of plant biology, providing an extensive range of protocols from basic to cutting edge. Coverage includes: Extraction and analysis of DNA, RNA, proteins Chromosome analysis Transcriptional analysis Protein expression Metabolites Plant enzymology Epigenetics Plant genetic transformation Mutagenesis Arabidopsis, Maize, Poplar, Rice, and Soybean, and more.
期刊最新文献
Issue Information Isolation, Library Preparation, and Bioinformatic Analysis of Historical and Ancient Plant DNA Isolation of Plant Root Nuclei for Single Cell RNA Sequencing Selective Enrichment Coupled with Proteomics to Identify S-Acylated Plasma Membrane Proteins in Arabidopsis In-Plate Quantitative Characterization of Arabidopsis thaliana Susceptibility to the Fungal Vascular Pathogen Fusarium oxysporum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1