Massively Parallel Assays and Quantitative Sequence-Function Relationships.

IF 7.7 2区 生物学 Q1 GENETICS & HEREDITY Annual review of genomics and human genetics Pub Date : 2019-08-31 Epub Date: 2019-05-15 DOI:10.1146/annurev-genom-083118-014845
Justin B Kinney, David M McCandlish
{"title":"Massively Parallel Assays and Quantitative Sequence-Function Relationships.","authors":"Justin B Kinney,&nbsp;David M McCandlish","doi":"10.1146/annurev-genom-083118-014845","DOIUrl":null,"url":null,"abstract":"<p><p>Over the last decade, a rich variety of massively parallel assays have revolutionized our understanding of how biological sequences encode quantitative molecular phenotypes. These assays include deep mutational scanning, high-throughput SELEX, and massively parallel reporter assays. Here, we review these experimental methods and how the data they produce can be used to quantitatively model sequence-function relationships. In doing so, we touch on a diverse range of topics, including the identification of clinically relevant genomic variants, the modeling of transcription factor binding to DNA, the functional and evolutionary landscapes of proteins, and <i>cis</i>-regulatory mechanisms in both transcription and mRNA splicing. We further describe a unified conceptual framework and a core set of mathematical modeling strategies that studies in these diverse areas can make use of. Finally, we highlight key aspects of experimental design and mathematical modeling that are important for the results of such studies to be interpretable and reproducible.</p>","PeriodicalId":8231,"journal":{"name":"Annual review of genomics and human genetics","volume":"20 ","pages":"99-127"},"PeriodicalIF":7.7000,"publicationDate":"2019-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-genom-083118-014845","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of genomics and human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-genom-083118-014845","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/5/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 12

Abstract

Over the last decade, a rich variety of massively parallel assays have revolutionized our understanding of how biological sequences encode quantitative molecular phenotypes. These assays include deep mutational scanning, high-throughput SELEX, and massively parallel reporter assays. Here, we review these experimental methods and how the data they produce can be used to quantitatively model sequence-function relationships. In doing so, we touch on a diverse range of topics, including the identification of clinically relevant genomic variants, the modeling of transcription factor binding to DNA, the functional and evolutionary landscapes of proteins, and cis-regulatory mechanisms in both transcription and mRNA splicing. We further describe a unified conceptual framework and a core set of mathematical modeling strategies that studies in these diverse areas can make use of. Finally, we highlight key aspects of experimental design and mathematical modeling that are important for the results of such studies to be interpretable and reproducible.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模并行分析和定量序列-函数关系。
在过去的十年中,丰富多样的大规模平行分析已经彻底改变了我们对生物序列如何编码定量分子表型的理解。这些检测包括深度突变扫描、高通量SELEX和大规模并行报告基因检测。在这里,我们回顾了这些实验方法,以及它们产生的数据如何用于定量建模序列-函数关系。在此过程中,我们涉及了一系列不同的主题,包括临床相关基因组变异的鉴定,转录因子与DNA结合的建模,蛋白质的功能和进化景观,以及转录和mRNA剪接中的顺式调节机制。我们进一步描述了一个统一的概念框架和一套核心的数学建模策略,这些研究可以在这些不同的领域使用。最后,我们强调了实验设计和数学建模的关键方面,这些方面对于这些研究结果的可解释性和可重复性非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.90
自引率
1.10%
发文量
29
期刊介绍: Since its inception in 2000, the Annual Review of Genomics and Human Genetics has been dedicated to showcasing significant developments in genomics as they pertain to human genetics and the human genome. The journal emphasizes genomic technology, genome structure and function, genetic modification, human variation and population genetics, human evolution, and various aspects of human genetic diseases, including individualized medicine.
期刊最新文献
PIK3CA-Related Disorders: From Disease Mechanism to Evidence-Based Treatments. RNA Sequencing in Disease Diagnosis. The Myriad Decision at 10. The Role of Cilia and the Complex Genetics of Congenital Heart Disease. Toward Realizing the Promise of AI in Precision Health Across the Spectrum of Care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1