{"title":"Signatures of sex: Sex differences in gene expression in the vertebrate brain.","authors":"Bruno Gegenhuber, Jessica Tollkuhn","doi":"10.1002/wdev.348","DOIUrl":null,"url":null,"abstract":"<p><p>Women and men differ in disease prevalence, symptoms, and progression rates for many psychiatric and neurological disorders. As more preclinical studies include both sexes in experimental design, an increasing number of sex differences in physiology and behavior have been reported. In the brain, sex-typical behaviors are thought to result from sex-specific patterns of neural activity in response to the same sensory stimulus or context. These differential firing patterns likely arise as a consequence of underlying anatomic or molecular sex differences. Accordingly, gene expression in the brains of females and males has been extensively investigated, with the goal of identifying biological pathways that specify or modulate sex differences in brain function. However, there is surprisingly little consensus on sex-biased genes across studies and only a handful of robust candidates have been pursued in the follow-up experiments. Furthermore, it is not known how or when sex-biased gene expression originates, as few studies have been performed in the developing brain. Here we integrate molecular genetic and neural circuit perspectives to provide a conceptual framework of how sex differences in gene expression can arise in the brain. We detail mechanisms of gene regulation by steroid hormones, highlight landmark studies in rodents and humans, identify emerging themes, and offer recommendations for future research. This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Gene Expression and Transcriptional Hierarchies > Sex Determination.</p>","PeriodicalId":23630,"journal":{"name":"Wiley Interdisciplinary Reviews: Developmental Biology","volume":"9 1","pages":"e348"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wdev.348","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wdev.348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/5/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 41
Abstract
Women and men differ in disease prevalence, symptoms, and progression rates for many psychiatric and neurological disorders. As more preclinical studies include both sexes in experimental design, an increasing number of sex differences in physiology and behavior have been reported. In the brain, sex-typical behaviors are thought to result from sex-specific patterns of neural activity in response to the same sensory stimulus or context. These differential firing patterns likely arise as a consequence of underlying anatomic or molecular sex differences. Accordingly, gene expression in the brains of females and males has been extensively investigated, with the goal of identifying biological pathways that specify or modulate sex differences in brain function. However, there is surprisingly little consensus on sex-biased genes across studies and only a handful of robust candidates have been pursued in the follow-up experiments. Furthermore, it is not known how or when sex-biased gene expression originates, as few studies have been performed in the developing brain. Here we integrate molecular genetic and neural circuit perspectives to provide a conceptual framework of how sex differences in gene expression can arise in the brain. We detail mechanisms of gene regulation by steroid hormones, highlight landmark studies in rodents and humans, identify emerging themes, and offer recommendations for future research. This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Gene Expression and Transcriptional Hierarchies > Sex Determination.
期刊介绍:
Developmental biology is concerned with the fundamental question of how a single cell, the fertilized egg, ultimately produces a complex, fully patterned adult organism. This problem is studied on many different biological levels, from the molecular to the organismal. Developed in association with the Society for Developmental Biology, WIREs Developmental Biology will provide a unique interdisciplinary forum dedicated to fostering excellence in research and education and communicating key advances in this important field. The collaborative and integrative ethos of the WIREs model will facilitate connections to related disciplines such as genetics, systems biology, bioengineering, and psychology.
The topical coverage of WIREs Developmental Biology includes: Establishment of Spatial and Temporal Patterns; Gene Expression and Transcriptional Hierarchies; Signaling Pathways; Early Embryonic Development; Invertebrate Organogenesis; Vertebrate Organogenesis; Nervous System Development; Birth Defects; Adult Stem Cells, Tissue Renewal and Regeneration; Cell Types and Issues Specific to Plants; Comparative Development and Evolution; and Technologies.